Skip to main content

Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

Lipoteichoic acids (LTA), polymers of repeating phosphodiester-linked polyols, are found in the outer leaflet of the plasma membrane of Gram-positive bacteria. Research on LTA structure represents a large, mostly unexplored frontier. LTA biosynthesis has been studied in several model organisms, including Staphylococcus aureus, Streptococcus pneumoniae, Bacillus subtilis, and Bacillus anthracis. This work led to several hypotheses of LTA function to support bacterial growth, cell division and separation, ion hemostasis, as well as envelope assembly and integrity. Molecular genetic studies also revealed catalysts for LTA substituents with D-alanine, phosphocholine and glycolipid anchors that impact the invasive attributes of bacterial pathogens or the anti-inflammatory attributes of microbiota. Consequently, LTA is being explored as a target for the development of antibiotics, vaccines, and immune therapeutics in order to address important unmet clinical needs for the treatment of human ailments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abachin E, Poyart C, Pellegrini E et al (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43:1–14

    Article  CAS  PubMed  Google Scholar 

  • Arakawa H, Shimada A, Ishimoto N et al (1981) Occurrence of ribitol-containing lipoteichoic acid in Staphylococcus aureus H and its glycosylation. J Biochem 89:1555–1563

    Article  CAS  PubMed  Google Scholar 

  • Baddiley J, Neuhaus FC (1960) The enzymic activation of D-alanine. Biochem J 75:579–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek KT, Bowman L, Millership C et al (2016) The cell wall polymer lipoteichoic acid becomes nonessential in Staphylococcus aureus cells lacking the ClpX chaperone. MBio 7. doi: 10.1128/mBio.01228-16

    Google Scholar 

  • Berg S, Kaur D, Jackson M et al (2007) The glycosyltransferases of Mycobacterium tuberculosis – roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 17:35–56R

    Article  PubMed  CAS  Google Scholar 

  • Briles EB, Tomasz A (1973) Pneumococcal Forssman antigen. A choline-containing lipoteichoic acid. J Biol Chem 248:6394–6397

    CAS  PubMed  Google Scholar 

  • Broecker F, Martin CE, Wegner E et al (2016) Synthetic lipoteichoic acid glycans are potential vaccine candidates to protect from Clostridium difficile infections. Cell Chem Biol 23:1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Campbell J, Singh AK, Santa Maria JP Jr (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6:106–116

    Article  CAS  PubMed  Google Scholar 

  • Chan YG, Frankel MB, Dengler V et al (2013) Staphylococcus aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the extracellular medium. J Bacteriol 195:4650–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YG, Kim HK, Schneewind O et al (2014) The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes. J Biol Chem 289:15680–15690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cleveland RF, Höltje JV, Wicken AJ et al (1975) Inhibition of bacterial wall lysins by lipoteichoic acids and related compounds. Biochem Biophys Res Commun 67:1128–1135

    Article  CAS  PubMed  Google Scholar 

  • Corrigan RM, Abbott JC, Burhenne H (2011) c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7:e1002217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrigan RM, Campeotto I, Jeganathan T et al (2013) Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A 110:9084–9089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox AD, St Michael F, Aubry A et al (2013) Investigating the candidacy of a lipoteichoic acid-based glycoconjugate as a vaccine to combat Clostridium difficile infection. Glycoconj J 30:843–855

    Article  CAS  PubMed  Google Scholar 

  • D’Elia MA, Millar KE, Beveridge TJ et al (2006) Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J Bacteriol 188:8313–8316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Damjanovic M, Kharat AS, Eberhardt A et al (2007) The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. J Bacteriol 189:7105–7111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehus O, Pfitzenmaier M, Stuebs G et al (2011) Growth temperature-dependent expression of structural variants of Listeria monocytogenes lipoteichoic acid. Immunobiology 216:24–31

    Article  CAS  PubMed  Google Scholar 

  • Denapaite D, Bruckner R, Hakenbeck R et al (2012) Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes. Microb Drug Resist 18:344–358

    Article  CAS  PubMed  Google Scholar 

  • Duckworth M, Archibald AR, Baddiley J (1975) Lipoteichoic acid and lipoteichoic acid carrier in Staphylococcus aureus H. FEBS Lett 53:176–179

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt A, Hoyland CN, Vollmer D et al (2012) Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Microb Drug Resist 18:240–255

    Article  CAS  PubMed  Google Scholar 

  • Fabretti F, Theilacker C, Baldassarri L et al (2006) Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun 74:4164–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Pericone CD, Lysenko E et al (2003) Multiple mechanisms for choline transport and utilization in Haemophilus influenzae. Mol Microbiol 50:537–548

    Article  CAS  PubMed  Google Scholar 

  • Fedtke I, Mader D, Kohler T et al (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65:1078–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer W (1994a) Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. Med Microbiol Immunol 183:61–76

    Article  CAS  PubMed  Google Scholar 

  • Fischer W (1994b) Lipoteichoic acids and lipoglycans. In: Ghuysen JM, Hakenbeck R (eds) New comprehensive biochemistry. Elsevier Science, Amsterdam, pp 199–215

    Google Scholar 

  • Fischer W (1997) Pneumococcal lipoteichoic and teichoic acid. Microb Drug Resist 3:309–325

    Article  CAS  PubMed  Google Scholar 

  • Fischer W, Koch HU, Haas R (1983) Improved preparation of lipoteichoic acids. Eur J Biochem 133:523–530

    Article  CAS  PubMed  Google Scholar 

  • Forsberg CW, Wyrick PB, Ward JB et al (1973) Effect of phosphate limitation on the morphology and wall composition of Bacillus licheniformis and its phosphoglucomutase-deficient mutants. J Bacteriol 113:969–984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garufi G, Hendrickx AP, Beeri K et al (2012) Synthesis of lipoteichoic acids in Bacillus anthracis. J Bacteriol 194:4312–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehre F, Leib SL, Grandgirard D et al (2008) Essential role of choline for pneumococcal virulence in an experimental model of meningitis. J Intern Med 264:143–154

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg I (2002) Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 2:171–179

    Article  CAS  PubMed  Google Scholar 

  • Gisch N, Kohler T, Ulmer AJ et al (2013) Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. J Biol Chem 288:15654–15667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gisch N, Schwudke D, Thomsen S et al (2015) Lipoteichoic acid of Streptococcus oralis Uo5: a novel biochemical structure comprising an unusual phosphorylcholine substitution pattern compared to Streptococcus pneumoniae. Sci Rep 5:16718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goebel WF, Adams MH (1943) The immunological properties of the heterophile antigen and somatic polysaccharide of Pneumococcus. J Exp Med 77:435–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotschlich EC, Liu TY (1967) Structural and immunological studies on the pneumococcal C polysaccharide. J Biol Chem 242:463–470

    CAS  PubMed  Google Scholar 

  • Greenberg JW, Fischer W, Joiner KA (1996) Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun 64:3318–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gründling A, Schneewind O (2007a) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol 189:2521–2530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gründling A, Schneewind O (2007b) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci USA 104:8478–8483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haas R, Koch HU, Fischer W (1984) Alanyl turnover from lipoteichoic acid to teichoic acid in Staphylococcus aureus. FEMS Microbiol Lett 21:27–31

    Article  CAS  Google Scholar 

  • Heilmann C, Hussain M, Peters G et al (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Henneke P, Morath S, Uematsu S et al (2005) Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol 174:6449–6455

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki H, Shimada A, Ito E (1986) Comparative studies of lipoteichoic acids from several Bacillus strains. J Bacteriol 167:508–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankute M, Cox JA, Harrison J et al (2015) Assembly of the mycobacterial cell wall. Annu Rev Microbiol 69:405–423

    Article  CAS  PubMed  Google Scholar 

  • Jonquieres R, Bierne H, Fiedler F et al (1999) Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol 34:902–914

    Article  CAS  PubMed  Google Scholar 

  • Jorasch P, Wolter FP, Zahringer U et al (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29:419–430

    Article  CAS  PubMed  Google Scholar 

  • Jorasch P, Warnecke DC, Lindner B et al (2000) Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycolipids, glycophospholipids, glycosphingolipids, and glycosylsterols. Eur J Biochem 267:3770–3783

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Marles-Wright J, Cleverley RM et al (2011) A widespread family of bacterial cell wall assembly proteins. EMBO J 30:4931–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiriukhin MY, Debabov DV, Shinabarger DL et al (2001) Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J Bacteriol 183:3506–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch HU, Haas R, Fischer W (1984) The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur J Biochem 138:357–363

    Article  CAS  PubMed  Google Scholar 

  • Koch HU, Doker R, Fischer W (1985) Maintenance of D-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus. J Bacteriol 164:1211–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kodali S, Vinogradov E, Lin F et al (2015) A Vaccine approach for the prevention of infections by multidrug-resistant Enterococcus faecium. J Biol Chem 290:19512–19526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs M, Halfmann A, Fedtke I et al (2006) A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188:5797–5805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristian SA, Datta V, Weidenmaier C et al (2005) D-alanylation of teichoic acids promotes group a streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert PA, Hancock IC, Baddiley J (1977) Occurrence and function of membrane teichoic acids. Biochim Biophys Acta 472:1–12

    Article  CAS  PubMed  Google Scholar 

  • Lazarevic V, Soldo B, Medico N et al (2005) Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol 71:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeer S, Claes IJ, Vanderleyden J (2012) Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends Microbiol 20:5–10

    Article  CAS  PubMed  Google Scholar 

  • Lemjabbar H, Basbaum C (2002) Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 8:41–46

    Article  CAS  PubMed  Google Scholar 

  • Liszewski Zilla M, Chan YG, Lunderberg JM et al (2015) LytR-CpsA-Psr enzymes as determinants of Bacillus anthracis secondary cell wall polysaccharide assembly. J Bacteriol 197:343–353

    Article  PubMed  CAS  Google Scholar 

  • Mancuso DJ, Chiu TH (1982) Biosynthesis of glucosyl monophosphoryl undecaprenol and its role in lipoteichoic acid biosynthesis. J Bacteriol 152:616–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka S, Hashimoto M, Kamiya Y et al (2011) The Bacillus subtilis essential gene dgkB is dispensable in mutants with defective lipoteichoic acid synthesis. Genes Genet Syst 86:365–376

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Driessen NN, Appelmelk BJ et al (2011) Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol Rev 35:1126–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamadzadeh M, Pfeiler EA, Brown JB et al (2011) Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 108(Suppl 1):4623–4630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morath S, Geyer A, Hartung T (2001) Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J Exp Med 193:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosser JL, Tomasz A (1970) Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J Biol Chem 245:287–298

    CAS  PubMed  Google Scholar 

  • Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsen NJ, Deininger S, Nonstad U et al (2008) Cellular trafficking of lipoteichoic acid and toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol 84:280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberli MA, Hecht ML, Bindschadler P et al (2011) A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. Chem Biol 18:580–588

    Article  CAS  PubMed  Google Scholar 

  • Oku Y, Kurokawa K, Matsuo M et al (2009) Pleiotropic roles of polyglycerolphosphate synthase of lipoteichoic acid in growth of Staphylococcus aureus cells. J Bacteriol 191:141–151

    Article  CAS  PubMed  Google Scholar 

  • Percy MG, Grundling A (2014) Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol 68:81–100

    Article  CAS  PubMed  Google Scholar 

  • Percy MG, Karinou E, Webb AJ et al (2016) Identification of a lipoteichoic acid glycosyltransferase enzyme reveals that GW-domain-containing proteins can be retained in the cell wall of Listeria monocytogenes in the absence of lipoteichoic acid or its modifications. J Bacteriol 198:2029–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perego M, Glaser P, Minutello A et al (1995) Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 270:15598–15606

    Article  CAS  PubMed  Google Scholar 

  • Peschel A, Otto M, Jack RW et al (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410

    Article  CAS  PubMed  Google Scholar 

  • Peschel A, Vuong C, Otto M et al (2000) The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother 44:2845–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pooley HM, Paschoud D, Karamata D (1987) The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDPglucose pyrophosphorylase. J Gen Microbiol 133:3481–3493

    CAS  PubMed  Google Scholar 

  • Poxton IR, Tarelli E, Baddiley J (1978) The structure of C-polysaccharide from the walls of Streptococcus pneumoniae. Biochem J 175:1033–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman O, Dover LG, Sutcliffe IC (2009a) Lipoteichoic acid biosynthesis: two steps forwards, one step sideways? Trends Microbiol 17:219–225

    Article  CAS  PubMed  Google Scholar 

  • Rahman O, Pfitzenmaier M, Pester O et al (2009b) Macroamphiphilic components of thermophilic actinomycetes: identification of lipoteichoic acid in Thermobifida fusca. J Bacteriol 191:152–160

    Article  CAS  PubMed  Google Scholar 

  • Rane L, Subbarow Y (1940) Nutritional requirements of the pneumococcus: I. Growth factors for types I, II, V, VII, VIII. J Bacteriol 40:695–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reichmann NT, Gründling A (2011) Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in gram-positive bacteria of the phylum Firmicutes. FEMS Microbiol Lett 319:97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichmann NT, Cassona CP, Grundling A (2013) Revised mechanism of D-alanine incorporation into cell wall polymers in gram-positive bacteria. Microbiology 159:1868–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid CW, Vinogradov E, Li J et al (2012) Structural characterization of surface glycans from Clostridium difficile. Carbohydr Res 354:65–73

    Article  CAS  PubMed  Google Scholar 

  • Richter GS, Elli D, Kim HK et al (2013) Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for gram-positive bacteria. Proc Natl Acad Sci U S A 110:3531–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockel C, Hartung T (2012) Systematic review of membrane components of gram-positive bacteria responsible as pyrogens for inducing human monocyte/macrophage cytokine release. Front Pharmacol 3:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirner K, Marles-Wright J, Lewis RJ et al (2009) Distinct and essential morphogenetic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J 28:830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlag M, Biswas R, Krismer B et al (2010) Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol 75:864–873

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RR, Pedersen CM, Qiao Y et al (2011) Chemical synthesis of bacterial lipoteichoic acids: an insight on its biological significance. Org Biomol Chem 9:2040–2052

    Article  CAS  PubMed  Google Scholar 

  • Schneewind O, Missiakas D (2014) Lipoteichoic acids, phosphate containing polymers in the envelope of gram-positive bacteria. J Bacteriol 196:1133–1142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seo HS, Cartee RT, Pritchard DG et al (2008) A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model. J Bacteriol 190:2379–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheen TR, Ebrahimi CM, Hiemstra IH et al (2010) Penetration of the blood-brain barrier by Staphylococcus aureus: contribution of membrane-anchored lipoteichoic acid. J Mol Med (Berl) 88:633–639

    Article  CAS  Google Scholar 

  • Shiraishi T, Yokota S, Morita N et al (2013) Characterization of a Lactobacillus gasseri JCM 1131T lipoteichoic acid with a novel glycolipid anchor structure. Appl Environ Microbiol 79:3315–3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldo B, Lazarevic V, Margot P et al (1993) Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol 139:3185–3195

    Article  CAS  PubMed  Google Scholar 

  • Song JH, Ko KS, Lee JY et al (2005) Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells 19:365–374

    CAS  PubMed  Google Scholar 

  • Sorensen UB, Henrichsen J (1987) Cross-reactions between pneumococci and other streptococci due to C polysaccharide and F antigen. J Clin Microbiol 25:1854–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stortz CA, Cherniak R, Jones RG et al (1990) Polysaccharides from Peptostreptococcus anaerobius and structure of the species-specific antigen. Carbohydr Res 207:101–120

    Article  CAS  PubMed  Google Scholar 

  • Taron DJ, Childs WC 3rd, Neuhaus FC (1983) Biosynthesis of D-alanyl-lipoteichoic acid: role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation. J Bacteriol 154:1110–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theilacker C, Kaczynski Z, Kropec A et al (2006) Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect Immun 74:5703–5712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theilacker C, Kropec A, Hammer F et al (2012) Protection against Staphylococcus aureus by antibody to the polyglycerolphosphate backbone of heterologous lipoteichoic acid. J Infect Dis 205:1076–1085

    Article  CAS  PubMed  Google Scholar 

  • Tillett WS, Francis T (1930) Serological reactions in pneumonia with a non-protein somatic fraction of Pneumococcus. J Exp Med 52:561–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasz A (1967) Choline in the cell wall of a bacterium: novel type of polymer-linked choline in Pneumococcus. Science 157:694–697

    Article  CAS  PubMed  Google Scholar 

  • Uchikawa K, Sekikawa I, Azuma I (1986) Structural studies on lipoteichoic acids from four Listeria strains. J Bacteriol 168:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb AJ, Karatsa-Dodgson M, Gründling A (2009) Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes. Mol Microbiol 74:299–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287

    Article  CAS  PubMed  Google Scholar 

  • Weidenmaier C, Kokai-Kun JF, Kristian SA et al (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245

    Article  CAS  PubMed  Google Scholar 

  • Weisman LE, Thackray HM, Steinhorn RH et al (2011) A randomized study of a monoclonal antibody (pagibaximab) to prevent staphylococcal sepsis. Pediatrics 128:271–279

    Article  PubMed  Google Scholar 

  • Wicken AJ, Evans JD, Knox KW (1986) Critical micelle concentrations of lipoteichoic acids. J Bacteriol 166:72–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wörmann ME, Corrigan RM, Simpson PJ et al (2011) Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes. Mol Microbiol 79:566–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu C, Huang IH, Chang C et al (2014) Lethality of sortase depletion in Actinomyces oris caused by excessive membrane accumulation of a surface glycoprotein. Mol Microbiol 94:1227–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia G, Kohler T, Peschel A (2010) The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol 300:148–154

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Araki Y, Ito E (1988) The function of galactosyl phosphorylpolyprenol in biosynthesis of lipoteichoic acid in Bacillus coagulans. Eur J Biochem 173:453–458

    Article  CAS  PubMed  Google Scholar 

  • Young NM, Foote SJ, Wakarchuk WW (2013) Review of phosphocholine substituents on bacterial pathogen glycans: synthesis, structures and interactions with host proteins. Mol Immunol 56:563–573

    Article  CAS  PubMed  Google Scholar 

  • Zhang JR, Idanpaan-Heikkila I, Fischer W et al (1999) Pneumococcal licD2 gene is involved in phosphorylcholine metabolism. Mol Microbiol 31:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Zoll S, Schlag M, Shkumatov AV et al (2012) Ligand-binding properties and conformational dynamics of autolysin repeat domains in staphylococcal cell wall recognition. J Bacteriol 194:3789–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Missiakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Schneewind, O., Missiakas, D. (2017). Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-43676-0_17-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43676-0_17-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43676-0

  • Online ISBN: 978-3-319-43676-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria
    Published:
    27 January 2017

    DOI: https://doi.org/10.1007/978-3-319-43676-0_17-2

  2. Original

    Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria
    Published:
    17 December 2016

    DOI: https://doi.org/10.1007/978-3-319-43676-0_17-1