Skip to main content

Application of SVET/SIET Techniques to Study Healing Processes in Coated Metal Substrates

Handbook of Sol-Gel Science and Technology
  • 174 Accesses

Abstract

Self-healing has become a hot topic in the field of protective coatings where an intense effort is being carried out to find ways to prolong the service life of both coating and metal substrate. This chapter reviews the use of two localized electrochemical techniques, the Scanning Vibrating Electrode Technique (SVET) and the Scanning Ion-Selective Electrode Technique (SIET) for studying the performance, degradation, and healing processes of coated metals. First, a brief outline of corrosion and corrosion protection, with emphasis on organic coatings, is given to provide the context of the work. This is followed by the concept of self-healing coatings. The principles of SVET and SIET are then presented, together with selected examples of their use. The chapter closes with a discussion on the strategies to probe healing processes and a review of published work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ammann D. Ion-selective micro-electrodes, principles, design and applications. Berlin/Heidelberg: Springer; 1986.

    Google Scholar 

  • Andreeva DV, Fix D, Mohwald H, Shchukin DG. Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwich like nanostructures. Adv Mater. 2008;20:2789–94.

    Article  Google Scholar 

  • Appelo CAJ, Postma D. Geochemistry, groundwater and pollution. 2nd ed. Leiden: A.A. Balkema Publishers; 2005.

    Book  Google Scholar 

  • Bakker E, Pretsch E, Bühlmann P. Selectivity of potentiometric ion sensors. Anal Chem. 2000;72:1127–33.

    Article  Google Scholar 

  • Balaskas AC, Kartsonakis IA, Tziveleka L-A, Kordas GC. Improvement of anti-corrosive properties of epoxy-coated AA 2024-T3 with TiO2 nanocontainers loaded with 8-hydroxyquinoline. Prog Org Coat. 2012;74:418–26.

    Article  Google Scholar 

  • Bard AJ, Mirkin V, editors. Scanning electrochemical microscopy. 2nd ed. Boca Raton: CRC Press/Florida Taylor & Francis Group; 2012.

    Google Scholar 

  • Bard AJ, Fan FF, Kwak J, Lev O. Scanning electrochemical microscopy. Introduction and principles. Anal Chem. 1989;61:132–8.

    Article  Google Scholar 

  • Bastos AC, Taryba MG, Karavai OV, Zheludkevich ML, Lamaka SV, Ferreira MGS. Micropotentiometric mapping of local distributions of Zn2+ relevant to corrosion studies. Electrochem Commun. 2010a;12:394–7.

    Article  Google Scholar 

  • Bastos AC, Karavai OV, Zheludkevich ML, Yasakau KA, Ferreira MGS. Localised measurements of pH and dissolved oxygen as complements to SVET in the investigation of corrosion at defects in coated aluminum alloy. Electroanalysis. 2010b;22:2009–16.

    Article  Google Scholar 

  • Bastos AC, Quevedo MC, Ferreira MGS. Investigating the separation of anodic and cathodic defects in organic coatings applied on metal substrates. An experimental contribution. Prog Org Coat. 2016;96:26–31.

    Article  Google Scholar 

  • Bethke CM. Geochemical and biogeochemical reaction modelling. 2nd ed. Cambridge: Cambridge University Press; 2008.

    Google Scholar 

  • Bluh O, Scott BIH. Vibrating probe electrometer for the measurement of bioelectric potentials. Rev Sci Instrum. 1950;21:867–8.

    Article  Google Scholar 

  • Bohm S, McMurray HN, Powell SM, Worsley DA. Novel environment friendly corrosion inhibitor pigments based on naturally occurring clay minerals. Mater Corros. 2001;52:896–903.

    Article  Google Scholar 

  • Buchheit RG, Guan H, Mahajanam S, Wong F. Active corrosion protection and corrosion sensing in chromate-free organic coatings. Prog Org Coat. 2003;47:174–82.

    Article  Google Scholar 

  • Buck RP, Lindner E. Recommendations for nomenclature of ion-selective electrodes. Pure Appl Chem. 1994;66:2527–36.

    Article  Google Scholar 

  • Cho SH, White SR, Braun PV. Self-healing polymer coatings. Adv Mater. 2009;21:645–9.

    Article  Google Scholar 

  • Choi H, Kim KY, Park JM. Encapsulation of aliphatic amines into nanoparticles for self-healing corrosion protection of steel sheets. Prog Org Coat. 2016;76:1316–24.

    Article  Google Scholar 

  • Copson HR. Distribution of galvanic corrosion. Trans Electrochem Soc. 1943;84:71–82.

    Article  Google Scholar 

  • Cramer SD, Covino Jr BS. ASM handbook, corrosion: fundamentals, testing, and protection, vol. 13A. Materials Park: ASM International; 2003.

    Google Scholar 

  • Damborenea J, Conde A, Arenas AM, Maria Forsyth M, Hinton B. Corrosion inhibition with rare earth metal compounds in aqueous solutions. In: Rare earth-based corrosion inhibitors. Amsterdam: Woodhead Publishing Limited; 2014. p. 84–116.

    Chapter  Google Scholar 

  • Damjanovic A. Mechanistic analysis of oxygen electrode reactions. In: Bockris JO’M, Conway BE, editors. Modern aspects of electrochemistry, vol. 5. London: Plenum; 1969. p. 369–483.

    Google Scholar 

  • Dean JA, editor. Lange’s handbook of chemistry. 15th ed. New York: McGraw-Hill; 1999.

    Google Scholar 

  • Denuault G, Nagy G, Toth K. Potentiometric probes. In: Bard AJ, Mirkin MV, editors. Scanning electrochemical microscopy. 2nd ed. Boca Raton: CRC Press/Taylor & Francis Group; 2012. p. 275–316.

    Chapter  Google Scholar 

  • Dias SAS, Lamaka SV, Nogueira CA, Diamantino TC, Ferreira MGS. Sol–gel coatings modified with zeolite fillers for active corrosion protection of AA2024. Corros Sci. 2012;62:153–62.

    Article  Google Scholar 

  • Dimitrakopoulos LT, Dimitrakopoulos T, Alexander PW, Logic D, Hibbert DB. A tungsten oxide coated wire electrode used as a pH sensor in flow injection potentiometry. Anal Commun. 1998;35:395–8.

    Article  Google Scholar 

  • Ding H, Hihara LH. Localized corrosion currents and pH profile over B4C, SiC, and Al2O3 reinforced 6092 aluminum composites. J Electrochem Soc. 2005;152:B161–7.

    Article  Google Scholar 

  • Dolgikh O, Demeter AS, Lamaka SV, Taryba M, Bastos AC, Quevedo MC, Deconinck J. Simulation of the role of vibration on scanning vibrating electrode technique measurements close to a disc in plane. Electrochim Acta. 2016;203:379–87.

    Article  Google Scholar 

  • Doughty JM, Langton PD. Measurement of chloride flux associated with the myogenic response in rat cerebral arteries. J Physiol. 2001;534(3):753–61.

    Article  Google Scholar 

  • Egorov VV, Zdrachek EA, Nazarov VA. Improved separate solution method for determination of low selectivity coefficients. Anal Chem. 2014;86:3693–6.

    Article  Google Scholar 

  • El-Giar EE-DM, Wipf DO. Microparticle-based iridium oxide ultramicroelectrodes for pH sensing and imaging. J Electroanal Chem. 2007;609:147–54.

    Article  Google Scholar 

  • Engstrom RC, Weber M, Wunder DJ, Burgess R, Winquist S. Measurements within the diffusion layer using a microelectrode probe. Anal Chem. 1986;58:844–8.

    Article  Google Scholar 

  • Evans UR. The corrosion and oxidation of metals: scientific principles and practical applications. London: E. Arnold; 1960a. p. 861–3.

    Google Scholar 

  • Evans UR. The corrosion and oxidation of metals: scientific principles and practical applications. London: E. Arnold; 1960b. p. 899.

    Google Scholar 

  • Fedrizzi L, Fürbeth W, Montemor F, editors. Self-healing properties of new surface treatments, European Federation of Corrosion Publications, EFC, vol. 58. Leeds: Maney Publishing; 2011.

    Google Scholar 

  • Feng W, Patel SH, Young M-Y, Zunino III JL, Xanthos M. Smart polymeric coatings – recent advances. Adv Polym Technol. 2007;26:1–13.

    Article  Google Scholar 

  • Ferrier J, Lucas WJ. Ion transport and the vibrating probe. Biophys J. 1986;49:803–7.

    Article  Google Scholar 

  • Fontana M. Corrosion engineering. 3rd ed. New York: McGraw-Hill; 1986.

    Google Scholar 

  • Forsgren A. Corrosion control through organic coatings. Boca Raton: CRC/Taylor and Francis Group LLC; 2006.

    Book  Google Scholar 

  • Funke W. Blistering of paint films and filiform corrosion. Prog Org Coat. 1981;9:29–46.

    Article  Google Scholar 

  • García SJ, Fischer HR, van der Zwaag S. A critical appraisal of the potential of self healing polymeric coatings. Prog Org Coat. 2011;72:211–21.

    Article  Google Scholar 

  • Hoar TP. Report of the committee on corrosion and protection. London: HMSO; 1971.

    Google Scholar 

  • Hoare JP. The electrochemistry of oxygen. New York: Interscience; 1968.

    Google Scholar 

  • Horrocks BR, Mirkin MV, Pierce DT, Bard AJ. Scanning electrochemical microscopy. 19. Ion-selective potentiometric microscopy. Anal Chem. 1993;65:1213–24.

    Article  Google Scholar 

  • Huang VM, Wu SL, Orazem ME, Pébère N, Tribollet B, Vivier V. Local electrochemical impedance spectroscopy: a review and some recent developments. Electrochim Acta. 2011;56:8048–57.

    Google Scholar 

  • Hughes AE, Mol JMC, Zheludkevich ML, Rudolph G, Buchheit RG, editors. Active protective coatings, new-generation coatings for metals. Dordrecht: Springer; 2016.

    Google Scholar 

  • Isaacs H, Vyas B. Scanning reference electrode techniques. In: Masfeld M, Bertocci U, editors. Localized techniques, in electrochemical corrosion testing, ASTM STP 727. Philadelphia: American Society for Testing and Materials; 1981. p. 3–33.

    Google Scholar 

  • Jaffe LF, Nucitelli R. An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol. 1974;63:614–28.

    Article  Google Scholar 

  • Jones DA. Principles and prevention of corrosion. 2nd ed. Upper Saddle River: Prentice-Hall; 1996.

    Google Scholar 

  • Khramov AN, Voevodin NN, Balbyshev VN, Donley MS. Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors. Thin Solid Films. 2004;447–448:549–57.

    Article  Google Scholar 

  • Klusmann E, Schultze JW. pH-microscopy – theoretical and experimental investigations. Electrochim Acta. 1997;42:3123–34.

    Article  Google Scholar 

  • Koch GH, Brongers PH, Thompson NG, Virmani YP, Payer JH. Corrosion costs and preventive strategies in the United States. Report FHWA-RD-01-156, Federal Highway Administration, Washington, DC, March 2002; see also Mater Perform 2002;42:3 July (Supplement).

    Google Scholar 

  • Kropf DL. Intracellular potential recording as a means to investigate the transhyphal current in Achlya. In: Nucitelli R, editor. Ionic currents in development. New York: Alan R. Liss Inc; 1986. p. 97–104.

    Google Scholar 

  • Kruger J. Cost of metallic corrosion. In: Revie RW, editor. Uhlig’s corrosion handbook. 3rd ed. Hoboken: Wiley; 2011. p. 15–20.

    Chapter  Google Scholar 

  • Kumar A, Stephenson LD, Murray JN. Self-healing coatings for steel. Prog Org Coat. 2006;55:244–53.

    Article  Google Scholar 

  • Kunkel JG, Cordeiro S, Xu YJ, Shipley A, Feijó JA. Use of non-invasive ion-selective microelectrode techniques for the study of plant development. In: Volkov A, editor. Plant electrophysiology. Theory and methods. Berlin/Heidelberg/New York: Springer; 2006. p. 109–37.

    Chapter  Google Scholar 

  • Lamaka SV, Zheludkevich LM, Yasakau KA, Montemor MF, Cecílio P, Ferreira MGS. TiOx self-assembled networks prepared by templating approach as nanostructured reservoirs for self-healing anticorrosion pre-treatments. Electrochem Commun. 2006;8:421–8.

    Article  Google Scholar 

  • Lamaka SV, Karavai OV, Bastos AC, Zheludkevich ML, Ferreira MGS. Monitoring local spatial distribution of Mg2+, pH and ionic currents. Electrochem Commun. 2008;10:259–62.

    Article  Google Scholar 

  • Lamaka S, Souto RM, Ferreira MGS. In-situ visualization of local corrosion by scanning ion-selective electrode technique (SIET). In: Mendez-Vilas A, Diaz J, editors. Microscopy: science, technology application and education, vol. 3. Badajoz: Formatex; 2010. p. 2162–73.

    Google Scholar 

  • Leidheiser H. Coatings. In: Mansfeld F, editor. Corrosion mechanisms, Chemical industries, vol. 28. New York: Marcel Dekker; 1987.

    Google Scholar 

  • Leng A, Streckel H, Stratmann M. The delamination of polymeric coatings from Steel. Part 1: Calibration of the Kelvinprobe and basic delamination mechanism. Corros Sci. 1999;41:547–78.

    Article  Google Scholar 

  • Lillard RS, Moran PJ, Isaacs HS. A novel method for generating quantitative local electrochemical impedance spectroscopy. J Electrochem Soc. 1992;139:1007–12.

    Article  Google Scholar 

  • Lorenz WJ, Heusler KE. Anodic dissolution of iron group metals. In: Mansfeld F, editor. Corrosion mechanisms, Chemical industries, vol. 28. New York: Marcel Dekker; 1987. p. 1–83.

    Google Scholar 

  • Maccà C. Response time of ion-selective electrodes. Anal Chim Acta. 2004;512:183–90.

    Article  Google Scholar 

  • Maile FJ, Schauer T, Eisenbach CD. Evaluation of corrosion and protection of coated metals with local ion concentration technique (LICT). Prog Org Coat. 2000;38:11–116.

    Google Scholar 

  • Makhlouf ASH, editor. Handbook of smart coatings for materials protection, Woodhead Publishing series in metals and surface engineering, vol. 64. London: Woodhead Publishing Limited; 2014.

    Google Scholar 

  • Mayne JEO. The mechanism of the protective action of unpigmented film of polystyrene. JOCCA. 1949;352:481–7.

    Google Scholar 

  • Mishra T, Mohanty AK, Tiwari SK. Recent development in clay based functional coating for corrosion protection. Key Eng Mater. 2013;571:93–109.

    Article  Google Scholar 

  • Montemor F. Functional and smart coatings for corrosion protection: a review of recent advances. Surf Coat Technol. 2014;258:17–37.

    Article  Google Scholar 

  • Montemor MF, Snihirova DV, Taryba MG, Lamaka SV, Kartsonakis IA, Balaskas AC, Kordas GC, Tedim J, Kuznetsova A, Zheludkevich ML, Ferreira MGS. Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors. Electrochim Acta. 2012;60:31–40.

    Article  Google Scholar 

  • Morf WE. The principles of ion-selective electrodes and of membrane transport. Budapest: Elsevier; 1981.

    Google Scholar 

  • Munger CG. Corrosion prevention by protective coatings. Houston: National Association of Corrosion Engineers; 1986. p. 3.

    Google Scholar 

  • Newman IA. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ. 2001;24:1–14.

    Article  Google Scholar 

  • Newman J, Thomas-Alyea KE. Electrochemical systems. 3rd ed. Hoboken: Wiley-Interscience; 2004.

    Google Scholar 

  • Papeschi G, Mancuso S, Marras AM. Electrochemical behaviour of a Cu/CuSe microelectrode and its application in detecting temporal and spatial localisation of copper (II) fluxes along Olea europaea roots. J Solid State Electrochem. 2000;4:325–9.

    Article  Google Scholar 

  • Patton TC. Paint flow and pigment dispersion. a rheological approach to coating and ink technology. 2nd ed. New York: Wiley; 1979.

    Google Scholar 

  • Reid B, Nuccitelli R, Zhao M. Non-invasive measurement of bioelectric currents with a vibrating probe. Nat Protoc. 2007;3:661–9.

    Article  Google Scholar 

  • Revie RW, editor. Uhlig’s corrosion handbook. 3rd ed. Hoboken: Wiley; 2011.

    Google Scholar 

  • Richardson T, Scantlebury D, Cottis B, Graham M, Lindsay R, Lyon S, Stott H, editors. Shrier’s corrosion. 4th ed. Oxford, UK: Elsevier; 2010.

    Google Scholar 

  • Robinson RA, Stokes RH. Electrolyte solutions. 2nd ed. London: Butterworths; 1959.

    Google Scholar 

  • Rohwerder M, Turcu F. High-resolution Kelvin probe microscopy in corrosion science: scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP). Electrochim Acta. 2007;53:290–9.

    Article  Google Scholar 

  • Rohwerder M, Stratmann M, Leblanc P, Frankel GS. Application of scanning Kelvin probe in corrosion science. In: Mansfeld F, Marcus P, editors. Analytical methods in corrosion science and engineering. Boca Raton: CRC/Taylor & Francis Group; 2006. p. 133–68.

    Google Scholar 

  • Rosenfeld IL, Danilov IS. Electrochemical aspects of pitting corrosion. Corros Sci. 1967;7:129–42.

    Article  Google Scholar 

  • Saji VS, Cook R, editors. Corrosion protection and control using nanomaterials. Oxford: Woodhead Publishing Limited; 2012.

    Google Scholar 

  • Scheffey C. Electric fields and the vibrating probe, for the uninitiated. In: Nuccitelli R, editor. Ionic currents in development. New York: A.R. Liss Inc; 1986. p. xxv–xxvii.

    Google Scholar 

  • Scheffey C. Two approaches to construction of vibrating probes for electrical current measurement in solution. Rev Sci Instrum. 1988;59:787–92.

    Article  Google Scholar 

  • Schmid EV. Exterior durability of organic coatings. Surrey: FMJ; 1981.

    Google Scholar 

  • Serdechnova M, Kallip S, Ferreira MGS, Zheludkevich ML. Active self-healing coating for galvanically coupled multi-material assemblies. Electrochem Commun. 2014;41:51–4.

    Article  Google Scholar 

  • Shchukin DG, Zheludkevich ML, Yasakau KA, Lamaka SV, Ferreira MGS, Möhwald H. Layer-by-Layer assembled nanocontainers for self-healing corrosion protection. Adv Mater. 2006;18:1672–8.

    Article  Google Scholar 

  • Shchukin DG, Lamaka SV, Yasakau KA, Zheludkevich ML, Ferreira MGS, Möhwald H. Active anticorrosion coatings with halloysite nanocontainers. J Phys Chem C. 2008;112:958–64.

    Article  Google Scholar 

  • Silva EL, Bastos AC, Neto MA, Silva RF, Ferreira MGS, Zheludkevich ML, Oliveira FJ. Novel diamond microelectrode for pH sensing. Electrochem Commun. 2014;40:31–4.

    Article  Google Scholar 

  • Skoog DA, West DM, Holler FJ, Crouch SR. Fundamentals of analytical chemistry. 9th ed. Belmont: Brooks/Cole; 2014. p. 560.

    Google Scholar 

  • Snihirova D, Lamaka SV, Montemor MF. “SMART” protective ability of water based epoxy coatings loaded with CaCO3 microbeads impregnated with corrosion inhibitors applied on AA2024 substrates. Electrochim Acta. 2012;83:439–47.

    Article  Google Scholar 

  • Stratmann M. The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers – a new technique. Corros Sci. 1987;27:869–72.

    Article  Google Scholar 

  • Suter T, Böhni H. Microelectrodes for corrosion studies in microsystems. Electrochim Acta. 2001;47:191–9.

    Article  Google Scholar 

  • Tada E, Sugawara K, Kaneko H. Distribution of pH during galvanic corrosion of a Zn/steel couple. Electrochim Acta. 2004;49:1019–26.

    Article  Google Scholar 

  • Tan YJ. Wire beam electrode: a new tool for studying localised corrosion and other heterogeneous electrochemical processes. Corros Sci. 1998;41:229–47.

    Article  Google Scholar 

  • Tarasevich MR, Sadkowski A, Yeager E. Oxygen electrochemistry. In: Conway BE, Bockris JO’M, Yeager E, Khan SUM, White RE, editors. Comprehensive treatise of electrochemistry, vol. 7. New York: Plenum Press; 1983. p. 301–98.

    Chapter  Google Scholar 

  • Taryba MG, Lamaka SV. Plasticizer-free solid-contact pH-selective microelectrode for visualization of local corrosion. J Electroanal Chem. 2014;725:32–8.

    Article  Google Scholar 

  • Tedim J, Zheludkevich ML, Salak AN, Lisenkov A, Ferreira MGS. Nanostructured LDH-container layer with active protection functionality. J Mater Chem. 2011;21:15464–70.

    Article  Google Scholar 

  • Thomas NL. The barrier properties of paint coatings. Prog Org Coat. 1991;19:101–21.

    Google Scholar 

  • Thornhill RS, Evans UR. The electrochemistry of the corrosion of partly immersed zinc. J Chem Soc. 1938;2109–14.

    Google Scholar 

  • Tiwari A, Hihara LH, Rawlins JW, editors. Intelligent coatings for corrosion control. Boston: Butterworth-Heinemann; 2015.

    Google Scholar 

  • Trethewey KR, Sargeant DA, Marsh DJ, Tamimi AA. Applications of the scanning reference electrode technique to localized corrosion. Corros Sci. 1993;35:127.

    Article  Google Scholar 

  • Uhlig HH. The cost of corrosion in the United States. Chem Eng News. 1949;27:2764.

    Article  Google Scholar 

  • Umezawa Y, Umezawa K, Sato KH. Selectivity coefficients for ion-selective electrodes: recommended methods for reporting KA, Bpot values (Technical report). Pure Appl Chem. 1995;67:507–18.

    Article  Google Scholar 

  • Van der Zwaag S, editor. Self healing materials – an alternative approach to 20 centuries of materials science. Dordrecht: Springer; 2007.

    Google Scholar 

  • Vetter KJ. Electrochemical kinetics. New York: Academic; 1967.

    Google Scholar 

  • Voipio J, Pasternack M, Macleod K. Ion-sensitive microelectrodes. In: Ogden D, editor. Microelectrode techniques: the Plymouth workshop handbook. Cambridge, UK: Company of Biologists; 1994.

    Google Scholar 

  • Wei H, Wang Y, Guo J, Shen NZ, Jiang D, Zhang X, Yan X, Zhu J, Wang Q, Shao L, Lin H, Wei S, Guo Z. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J Mater Chem A. 2015;3:469–80.

    Article  Google Scholar 

  • White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S. Autonomic healing of polymer composites. Nature. 2001;409:794–7.

    Article  Google Scholar 

  • Wicks ZW, Jones FN, Papas SP, Wickd DA, editors. Organic coatings science and technology. 3rd ed. Hoboken: Wiley; 2007.

    Google Scholar 

  • Williams G, McMurray HN. Localized corrosion of magnesium in chloride-containing electrolyte Studied by a scanning vibrating electrode technique. J Electrochem Soc. 2008;155:C340–9.

    Article  Google Scholar 

  • Wranglen G. An introduction to corrosion and protection of metals. 2nd ed. London: Chapman and Hall; 1985.

    Book  Google Scholar 

  • Wright MR. An introduction to aqueous electrolyte solutions. New York: Wiley; 2007.

    Google Scholar 

  • Wu C, Zhou X, Tan Y. A study on the electrochemical inhomogeneity of organic coatings. Prog Org Coat. 1995;25:379–89.

    Article  Google Scholar 

  • Wu DY, Meure S, Solomon D. Self-healing polymeric materials: a review of recent developments. Prog Polym Sci. 2008;33:479–522.

    Article  Google Scholar 

  • Zhang XG. Corrosion and electrochemistry of zinc. New York: Plenum Press; 1996. p. 32–6.

    Book  Google Scholar 

  • Zheludkevich M. Self-healing anticorrosion coatings. In: Ghosh SK, editor. Self-healing materials, fundamentals, design strategies, and applications. Weinheim: Wiley-VCH; 2009. p. 101–39.

    Google Scholar 

  • Zheludkevich ML, Shchukin DG, Yasakau KA, Mohwald H, Ferreira MGS. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem Mater. 2007;19:402–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Bastos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Bastos, A. (2016). Application of SVET/SIET Techniques to Study Healing Processes in Coated Metal Substrates. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_138-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_138-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Application of SVET/SIET Techniques to Study Healing Processes in Coated Metal Substrates
    Published:
    02 June 2017

    DOI: https://doi.org/10.1007/978-3-319-19454-7_138-2

  2. Original

    Application of SVET/SIET Techniques to Study Healing Processes in Coated Metal Substrates
    Published:
    11 November 2016

    DOI: https://doi.org/10.1007/978-3-319-19454-7_138-1