Skip to main content

Sol-gel Wood Preservation

Handbook of Sol-Gel Science and Technology

Abstract

The sol–gel-based modification of wood introduces chemical substances into wood in order to improve its characteristics and impart new properties. It stabilizes dimensions of wood (timber) components, increases its strength and resistance to water, and reduces cracking. Many sol–gel-based impregnations aim to protect against wood rot and fire. In most cases, the treatments are performed with alkoxysilanes, polysiloxanes, colloidal silica, or organically modified silica. In addition further substances such as titania, copper, and boron compounds have been applied on different types of wood. The precursor solutions were introduced by immersion, painting, or spray coating of wood followed by a drying and heat treatment process. The structure of the impregnated wood was investigated by SEM, EDX, TEM, FT-IR, NMR, and XRD. Frequently, test procedures according to standards were applied in order to assess the improvement in properties. Investigations demonstrate that silica and titania impregnations change properties first of all with increasing the amount of absorbed inorganic material (WPG), which is determined by the concentration of precursors, amount and size of particles in the sol, and the impregnation method. Sol–gel impregnation can be considered as an environmentally friendly approach of wood preservation. Various improvements in wood properties can be achieved such as reduced water uptake and volume swelling, improved weather stability, resistance against biodegradation, and fire retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The chemical labeling of the abbreviations is given in Table 1.

References

  • Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market. Official Journal of the european Commnunities L. 1998;123:1–62.

    Google Scholar 

  • Aloui F, Ahajji A, Irmouli Y, George B, Charrier B, Merlin A. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: comparison with organic UV absorbers. Appl Surf Sci. 2007;253:3737–45.

    Article  Google Scholar 

  • Altun S, Ozcifci A, Şenel A, Baysal E, Toker H. Effects of silica gel on leaching resistance and thermal properties of impregnated wood. Wood Res. 2010;55(4):101–12.

    Google Scholar 

  • ASTM D1037-12 Standard test Methods for evaluating properties of wood-base fiber and particle panel materials. ASTM International, 100 Barr Harbor Drive, PO Box C700, PA, USA; 2012.

    Google Scholar 

  • ASTM E1354–15a Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter. ASTM International, 100 Barr Harbor Drive, PO Box C700, PA, USA; 2015.

    Google Scholar 

  • ASTM D2863–13 Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index).

    Google Scholar 

  • ASTM D3806 Standard test method of small-scale evaluation of fire-retardant paints (2-foot tunnel method). ASTM International, 100 Barr Harbor Drive, PO Box C700, PA, USA; 2004.

    Google Scholar 

  • Babrauskas V. The cone calorimeter. SFPE handbook of fire protection engineering, 3rd edn, Chapter 3.3, DiNenno PJ, Drysdale D, Beyler CL, Walton WD, Custer RLP, Hall Jr JR, Watts Jr JM (eds). National Fire Protection Association, Inc. Quincy, MA 2002; In The3-63-3-81; 2002.

    Google Scholar 

  • Baysal E. Determination of oxygen index levels and thermal analysis of Scots Pine (Pinus sylvestris L.) impregnated with melamine formaldehyde–boron combinations. J Fire Sci. 2002;20:373–89.

    Article  Google Scholar 

  • Böttcher H, Jagota C, Trepte J, Kallies KH, Haufe HH. Sol–gel composite films with controlled release of biocides. J Control Release. 1999;60:57–65.

    Article  Google Scholar 

  • Bücker M, Böcker W, Reinsch S, Unger B. Wood modification by sol-gel derived precursors. In. proceedings of the 1st European conference on wood modification Ghent, pp. 255–259. ISBN 9080656526; 2003.

    Google Scholar 

  • Bücker M, Jäger C, Pfeifer D, Unger B. Evidence of Si–O–C bonds in cellulosic materials modified by sol–gel-derived silica. Wood Sci Technol. 2014;48:1033–47.

    Article  Google Scholar 

  • Caldeira F. Boron in wood preservation – a review in its physico-chemical aspects. Silva Lusit. 2010;18:179–96.

    Google Scholar 

  • Canosa G, Alfieri P, Giudice CA. Nano lithium silicates as flame-retardant impregnants for Pinus radiata. J Fire Sci. 2011;29(5):431–41.

    Google Scholar 

  • Cappelletto E, Maggini S, Girardi F, Bochicchio G, Tessadri B, Di Maggio R. Wood surface protection with different alkoxysilanes: a hydrophobic barrier. Cellulose. 2013;20:3131–41.

    Article  Google Scholar 

  • CEN15083-1 Durability of wood and wood-based products. Determination of the natural durability of solid wood against wood destroying fungi, test methods. Part 1: basidiomycetes. Brussels: European Committee for Standardization; 2006.

    Google Scholar 

  • CEN15119 Durability of wood and wood-based products. Estimation of emissions from preservative treated wood to the environment. Laboratory method. Brussels: European Committee for Standardization; 2005.

    Google Scholar 

  • Cervantes C, Guiterrez-Corona F. Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev. 1994;14:121–38.

    Google Scholar 

  • Chang H, Tu K, Wang X, Liu J. Facile preparation of stable superhydrophobic coatings on wood surfaces using silica-polymer nanocomposites. Bioressources. 2015a;10:2585–96.

    Google Scholar 

  • Chang H, Tu K, Wang X, Liua J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 2015b;39(5):30647–53.

    Article  Google Scholar 

  • Chen F, Yang X, Wu Q. Antifungal capability of TiO2 coated film on moist wood. Build Environ. 2009;44:1088–93.

    Article  Google Scholar 

  • Chu Z, Seeger S. Robust superhydrophobic wood obtained by spraying silicone nanoparticles. RSC Adv. 2015;5(28):21999–2004. doi:10.1039/C4RA13794A.

    Article  Google Scholar 

  • Cookson LJ, Scown DK, McCarthy KJ, Chew N. The effectiveness of silica treatments against wood-boring invertebrates. Holzforschung. 2007;61:326–32.

    Article  Google Scholar 

  • De Filpo G, Palermo AM, Rachiele F, Nicoletta FP. Preventing fungal growth in wood by titanium dioxide nanoparticles. Int Biodeter Biodegr. 2013;85:217–22.

    Article  Google Scholar 

  • De Vetter L, Depraetere G, Stevens M, Janssen C, Van Acke J. Potential contribution of organosilicon compounds to reduced leaching of biocides in wood protection. Ann For Sci. 2009;66(209):1–7.

    Google Scholar 

  • De Vetter L, Van den Bulcke J, De Windt I, Stevens M, VanAcker J. Preventive action of organosilicon treatments against disfigurement of wood under laboratory and outdoor conditions. Int Biodeter Biodegr. 2009b;63:1093–101.

    Article  Google Scholar 

  • De Vetter L, Van den Bulcke J, Van Acker J. Impact of organosilicon treatments on the wood-water relationship of solid wood. Holzforschung. 2010;64:463–8.

    Article  Google Scholar 

  • Denes AR, Tshabalala MA, Rowell R, Denes F, Young RA. Hexamethyldisiloxane – plasma coating of wood surfaces for creating water repellent characteristics. Holzforschung. 1999;53:318–26.

    Google Scholar 

  • Donath S, Militz H, Mai C. Wood modification with alkoxysilanes. Wood Sci Technol. 2004;38:555–66.

    Article  Google Scholar 

  • Donath S, Militz H, Mai C. Creating water-repellent effects on wood by treatment with silanes. Holzforschung. 2006;60:40–6.

    Google Scholar 

  • Eaton RA, Hale MDC. Wood: decay, pests and protection. London: Chapman & Hall; 1993.

    Google Scholar 

  • EN 117 Wood preservatives – determination of toxic values against Reticulitermes species (European termites) (Laboratory method). Brussels: European Committee for Standardization; 2005.

    Google Scholar 

  • EN 252 Field test method for determining the relative protective effectiveness of a wood preservative in ground contact. Brussels: European Committee for Standardization; 2015.

    Google Scholar 

  • EN 335 Durability of wood and wood-based products - Use classes: definitions, application to solid wood and wood-based products. Brussels: European Committee for Standadization; 2013.

    Google Scholar 

  • EN 599 Durability of wood and wood-based products. Performance of preventive wood preservatives as determined by biological tests. Part 1: specification according to hazard class. Brussels: European Committee for Standardization; 1996. zurückgezogen.

    Google Scholar 

  • EN 84 Wood preservatives e accelerated ageing of treated wood prior to biological testing. Leaching procedure. Brussels: European Committee for Standardization; 1997.

    Google Scholar 

  • EN ISO 11664-4 Colorimetry – part 4: CIE 1976 L*a*b* Colour space. Brussels: European Committee for Standardization; 2011.

    Google Scholar 

  • ENV807 Wood preservatives – determination of the effectiveness against soft rotting microfungi and other soil inhabiting micro-organisms. Brussels: europeran Committee for Standadization; 2001.

    Google Scholar 

  • Feci E, Nunes L, Palanti S, Duarte S, Predieri G, Vignali F. Effectiveness of sol-gel treatments coupled with copper and boron against subterranean termites. Proc 40th Annual Meeting Beijing, China 24-28 May 2009 IRG/WP 09-30493; 2009.

    Google Scholar 

  • Freeman MH, McIntyre CR. A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems – a review. For Prod J. 2008;58(11):6–27.

    Google Scholar 

  • Fu Y, Yu H, Sun Q, Li G, Liu Y. Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment. Holzforschung. 2012;66:739–44.

    Article  Google Scholar 

  • Fuchs JN. Ueber ein neues Product aus Kieselerde und Kali; und dessen n ü zzliche Anwendung als Schuzmittel gegen schnelle Verbreitung des Feuers in Theatern, als Bindemittel, zu firniß-artigen Anstrichen u.s.w. Dinglers Polytech J. 1825;17:465–81.

    Google Scholar 

  • Furuno T, Imamura Y. Combinations of wood and silicate Part 6. Biological resistances of wood-mineral composites using water glass-boron compound system. Wood Sci Technol. 1998;32:161–70.

    Article  Google Scholar 

  • Furuno T, Watanabe T, Suzuki N, Goto T, Yokoyama K. Microstructure and silica mineralization in the formation of silicified woods. 1. Species identification of silified woods and observations with a scanning electron microscope. Mokuzai Gakkaishi. 1986;32:387–400.

    Google Scholar 

  • Furuno T, Uehara T, Jodai S. Combination of wood and silicate I. Impregnation by water glass and applications of aluminium sulfate and calcium chloride as reactants. Mokuzai Gakkaishi. 1991;37:462–72.

    Google Scholar 

  • Furuno T, Shimada K, Uehara T, Jodai S. Combinations of wood and silicate II. Wood-mineral composites using water glass and reactance of barium chloride, boric acid, and borax and their properties. Mokuzai Gakkaishi. 1992;38:448–57.

    Google Scholar 

  • Furuno T, Uehara T, Jodai S. Combinations of wood and silicate III. Some properties of wood-mineral composites using the water glass boron compound system. Mokuzai Gakkaishi. 1993;39:561–70.

    Google Scholar 

  • Gao M, Pan DX, Sun CY. Study on the thermal degradation of wood treated with amino resin and amino resin modified with phosphoric acid. J Fire Sci. 2003;21:189–201.

    Article  Google Scholar 

  • Gao M, Zhu K, Sun YS. Thermal degradation of wood treated with amino resins and amino resins modified with phosphate in nitrogen. J Fire Sci. 2004;22:505–15.

    Article  Google Scholar 

  • Gao M, Sun CY, Wang CX. Thermal degradation of wood treated with flame retardants. J Therm Anal Calorim. 2006;85:765–9.

    Article  Google Scholar 

  • Gao L, Luc Y, Zhan X, Li J, Sun Q. A robust, anti-acid, and high-temperature–humidity resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane. Surf Coat Technol. 2015;262:33–9.

    Article  Google Scholar 

  • Ghosh SC, Militz H, Mai C. The efficacy of commercial silicones against blue stain and mould fungi in wood. Eur J Wood Wood Prod. 2009;67:159–67.

    Article  Google Scholar 

  • Ghosh SC, Dyckmans J, Militz H, Mai C. Effect of quat- and amino-silicones on fungal colonisation and decay of wood. Holzforschung. 2012a;66(8):1009–15.

    Article  Google Scholar 

  • Ghosh SC, Peters PC, Fitzgerald CJ, Militz H, Mai C. Resistance of Scots pine (Pinus sylvestris L.) wood modified by functionalized commercial silicone emulsions against subterranean termites. Wood Sci Technol. 2012b;46:1033–41.

    Article  Google Scholar 

  • Girardia F, Cappelletto E, Sandak J, Bochicchio G, Tessadri B, Palanti S, Feci E, Di Maggio R. Hybrid organic–inorganic materials as coatings for protecting wood. Prog Org Coat. 2014;77:449–57.

    Article  Google Scholar 

  • Giudice CA, Pereyra AM. Silica nanoparticles in high silica/alkali molar ratio solutions as fire-retardant impregnants for woods. Fire Mater. 2010;34:177–87.

    Google Scholar 

  • Giudice CA, Alfieri PV, Canosa G. Decay resistance and dimensional stability of Araucaria angustifolia using siloxanes synthesized by solgel process. Int Biodeterior Biodegradation. 2013a;83:166–70.

    Article  Google Scholar 

  • Giudice CA, Alfieri PV, Canosa G. Siloxanes synthesized “in situ” by sol–gel process for fire control in wood of Araucaria angustifolia. Fire Saf J. 2013b;61:348–54.

    Article  Google Scholar 

  • Götze J, Möckel R, Langhof N, Hengst M, Klinger M. Silicification of wood in the laboratory. Ceramics − Silikáty. 2008;52(4):268–77.

    Google Scholar 

  • Grexa O, Lübke H. Flammability parameters of wood tested on a cone calorimeter. Polym Degrad Stab. 2001;74:427–32.

    Article  Google Scholar 

  • Gronli MG, Varhegyi G, Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res. 2002;41:4201–8.

    Article  Google Scholar 

  • Hager R. Waterborne silicones as wood preservatives. IRG/WP95-30062; 1995.

    Google Scholar 

  • Hailwood AJ, Horrobin S. Absorption of water by polymers: analysis in terms of a simple model. Trans Faraday Soc. 1946;42:B084–B092. doi:10.1039/TF946420B084.

    Google Scholar 

  • Harada T. Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test. Fire Mater. 2001;25:161–7.

    Article  Google Scholar 

  • Hill CAS. How does the chemical modification of wood provide protection against decay fungi ? Presentation for COST E22, Finland; 2002;1–14.

    Google Scholar 

  • Hill CAS, Jones D. Dimensional changes in Corsican Pine Sapwood due to chemical modification with linear chain anhydrides. Holzforschung. 1999;53:267–271.

    Google Scholar 

  • Hill CAS, Papadopoulos AN. A review of methods used to determine the size of the cell wall microvoids of wood. J Inst Wood Sci. 2001;90:337–45.

    Google Scholar 

  • Hill CAS, Mastery Farahani MR, Hale MDC. The use of organo alkoxysilane coupling agents for wood preservation. Holzforschung. 2004;58:316–25.

    Google Scholar 

  • Hirschler MM. Tools available to predict full scale fire performance of furniture. M.M. Hirschler. In Fire and polymers II. Materials and tests for hazard prevention, Nelson GL (ed). ACS symposium series 599, developed from ACS Symp. in 208th ACS National Mtg, 21–25 Aug 1994, Washington, DC, Chapter 36, pp. 593–608, Amer Chem Soc. Washington, DC; 1995.

    Google Scholar 

  • Hsieh C-T, Chang B-S, Lin J-Y. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating. Appl Surf Sci. 2011;257:7997–8002.

    Google Scholar 

  • Hübert T, Wachtendorf V. Results of accelerated weathering test, BAM, unpublished results; 2008.

    Google Scholar 

  • Hübert T, Unger B, Bücker M. Sol–gel derived TiO2 wood composites. J Sol-Gel Sci Technol. 2010;53:384–9.

    Article  Google Scholar 

  • Ibach RE. Biological properties of wood. In: Rowell RM (ed). Handbook of Wood Chemistry and Wood Composites. Taylor & Francis Group; 2013. pp. 99–126.

    Google Scholar 

  • IEC 60695–11-10 amendment 1 – fire hazard testing part 11-10: test flames – 50 W horizontal and vertical flame test methods. Geneva: International Electrochemical Commission; 2003.

    Google Scholar 

  • ISO 4589-2 Plastics – determination of burning behavior of oxygen index – part 2: ambient temperature test. Geneva: International Organization for Standardization; 2006.

    Google Scholar 

  • ISO 5660–1 Reaction- to-fire tests – heat release, smoke production and mass loss rate - part 1: heat release (cone calorimeter method). Geneva: International Organization for Standardization; 2015.

    Google Scholar 

  • Kanokwijitsilp T, Traiperm P, Osotchan T, Srikhirin T. Development of abrasion resistance SiO2 nanocomposite coating for teak wood. Prog Org Coat. 2016;93:118–26.

    Article  Google Scholar 

  • Kaur B, Gur IS, Bhatnagar HL. Studies on thermal degradation of cellulose and cellulose phosphoramides. J Appl Polym Sci. 1986;31:667–83.

    Article  Google Scholar 

  • Kiguchi M, Evans PD. Photostabilisation of wood surfaces using a grafted benzophenone UV absorber. Polym Degrad Stab. 1998;61:33–45.

    Article  Google Scholar 

  • Klüppel A, Cragg SM, Militz H, Mai C. Resistance of modified wood to marine borers. Int Biodeter Biodegr. 2015;104:8–14.

    Article  Google Scholar 

  • Lathela V, Hämäläinen K, Kärki T. The effects of preservatives on the properties of wood after modification. Baltic Forestry 2014;20:189–203.

    Google Scholar 

  • Lande S, Eikenes M, Westin M. Chemistry and ecotoxicology of furfurylated wood. Scand J For Res. 2004;19:14–21.

    Article  Google Scholar 

  • Lesar B, Humar M. Re-evaluation of fungicidal properties of boric acid. Eur J Wood Prod. 2009;67:483–4.

    Google Scholar 

  • Liu J, Wang C, Jiang Z et al. Preparation and characterization of water-base transparent flame-retardant ceramic coatings for wood via sol-gel method. Advanced composite materials, PTS 1-3 book series: Advanced materials research 482-484:1085-1088; 2012.

    Google Scholar 

  • Liu F, Wang S, Zhang M, Ma M, Wang C, Li J. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer. Appl Surf Sci. 2013;280:686–92.

    Article  Google Scholar 

  • Liu F, Gao Z, Zang D, Wang C, Li J. Mechanical stability of superhydrophobic epoxy/silica coating for better water resistance of wood. Holzforschung. 2015;69:367–74.

    Google Scholar 

  • Lu Y, Feng M, Zhan H. Preparation of SiO2–wood composites by an ultrasonic-assisted sol–gel technique. Cellulose. 2014;21:4393–4037.

    Article  Google Scholar 

  • Lukowsky D, Peek RD, Rapp AO. Water-based silicones on wood. IRG/WP 97-30144; 1997.

    Google Scholar 

  • Maggini S, Feci E, Cappelletto E, Girardi F, Palanti S, Di Maggio R. (I/O) hybrid alkoxysilane/zirconium-oxocluster copolymers as coatings for wood protection. Appl Mater Interfaces. 2012;4(9):4871–81.

    Article  Google Scholar 

  • Mahltig B, Swaboda C, Roessler A, Böttcher H. Functionalising wood by nanosol application. J Mater Chem. 2008;18:3180–92.

    Article  Google Scholar 

  • Mantanis GI, Papadopoulos AN. The sorption of water vapour of wood treated with a nanotechnology compound. Wood Sci Technol. 2010;44:515–22.

    Article  Google Scholar 

  • Marney DCO, Russell LJ, Mann R. Fire performance of wood (Pinus radiata) treated with fire retardants and a wood preservative. Fire Mater. 2008;32:357–70.

    Article  Google Scholar 

  • Miyafuji H, Fujiwara Y. Fire resistance of wood treated with various ionic liquids (ILs). Holzforschung. 2013;67:787–93.

    Article  Google Scholar 

  • Miyafuji H, Saka S. Wood-inorganic composites prepared by the sol-gel process V. Fire-resisting properties of the SiO2-P2O5-B, O3 wood-inorganic composites. Mokuzai Gakkaishi. 1996;42:74–80.

    Google Scholar 

  • Miyafuji H, Saka S. Fire-resisting properties in several TiO2 wood-inorganic composites and their topochemistry. Wood Sci Technol. 1997;31:449–55.

    Google Scholar 

  • Miyafuji H, Saka S. Topochemistry of SiO2 wood-inorganic composites for enhancing water-repellency. Mater Sci Res Int. 1999;5(4):270–5.

    Google Scholar 

  • Miyafuji H, Saka S. Na20-Si02 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties. J Wood Sci. 2001;47:483–9.

    Article  Google Scholar 

  • Miyafuji H, Saka S, Yamamoto A. SiO2-P2O5-B2O3 wood-inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties. Holzforschung. 1998;52(4):410–6.

    Article  Google Scholar 

  • Miyafuji H, Kokaji H, Saka S. Photostable wood–inorganic composites prepared by the sol-gel process with UV absorbent. J Wood Sci. 2004;50:130–5.

    Article  Google Scholar 

  • Mohammed-Ziegler I, Tanczos I, Horvölgyi Z, Agoston B. Water-repellent acylated and silylated wood samples and their surface analytical characterization. Colloids Surf A Physicochem Eng Asp. 2008;319:204–12.

    Article  Google Scholar 

  • Murugan P, Mahinpey N, Johnson KE, Wilson M. Kinetics of the pyrolysis of lignin using thermogravimetric and differential scanning calorimetry methods. Energy Fuel. 2008;22(4):2720–4.

    Article  Google Scholar 

  • Nami Kartal S, Yoshimura T, Imamura Y. Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance. Int Biodeterior Biodegrad. 2009;63:187–90.

    Article  Google Scholar 

  • Nicholas DD, Militz H. Concepts in the development of new accelerated test methods for wood decay. In Schultz TP, Militz H, Freeman MH, Goodell B, Nicholas DD (eds), Development of commercial wood preservatives, ACS symposium series, Chapter 7, 982:142–151. American Chemical Society, Washington; 2008.

    Google Scholar 

  • Ogiso K, Saka S. Wood-inorganic composites prepared by sol-gel process II. Effects of ultrasonic treatments on preparation of wood-inorganic composites. Mokuzai Gakkaishi. 1993;39(3):301–7.

    Google Scholar 

  • Oltean L, Teischinger A, Hansmann C. Wood surface discolouration due to simulated indoor sunlight exposure. Holz Roh Werkst. 2008;66:51–6.

    Article  Google Scholar 

  • Palanti S, Feci E, Predieri G, Vignali F. Copper complexes grafted to amino-functionalized silica gel as wood preservatives against fungal decay: mini-blocks and standard test. Bioresources. 2012a;7:5611–21.

    Article  Google Scholar 

  • Palanti S, Feci E, Predieri G, Vignali F. A wood treatment based on siloxanes and boric acid against fungal decay and coleopter Hylotrupes bajulus. Int Biodeter Biodegr. 2012b;75:49–54.

    Article  Google Scholar 

  • Panov D, Terziev N. Durability of epoxy-oil modified and alkoxysilane treated wood in field testing. Bioresources. 2015;10(2):2479–91.

    Article  Google Scholar 

  • Papadopoulos AN, Hill CAS. The sorption of water vapour by anhydride modified softwood. Wood Sci Technol. 2003;37:221–31.

    Article  Google Scholar 

  • Parker WJ, Tran HC. In: Babrauskas V, Grayson SJ, editors. Heat release in fires, chapt 4. New York: Elsevier; 1992. p. 331.

    Google Scholar 

  • Pedieu R, Koubaa A, Riedl B, Wang XM, Deng J. Fire-retardant properties of wood particleboards treated with boric acid. Eur J Wood Prod. 2012;70:191–7.

    Article  Google Scholar 

  • Pereyra AM, Giudice CA. Flame-retardant impregnants for woods based on alkaline silicates. Fire Saf J. 2009;44:497–503.

    Article  Google Scholar 

  • Petric M. Surface modification of wood: a critical review. Rev Adhes Adhes. 2013;1(2):216–47.

    Article  Google Scholar 

  • Pfeffer A, Mai C, Militz H. Weathering characteristics of wood treated with water glass, siloxane or DMDHEU. Eur J Wood Prod 2012;70:165–176.

    Article  Google Scholar 

  • Pries M, Mai C. Fire resistance of wood treated with a cationic silica sol. Eur J Wood Prod. 2013a;71:237–44.

    Article  Google Scholar 

  • Pries M, Mai C. Treatment of wood with silica sols against attack by wood-decaying fungi and blue stain. Holzforschung. 2013b;67(6):697–705.

    Article  Google Scholar 

  • Pries M, Wagner R, Kaesler KH, Militz H, Mai C. Effect of short-chain silicones bearing different functional groups on the resistance of pine (Pinus sylvestris L.) and beech (Fagus sylvatica L.) against decay fungi. Holzforschung. 2013;67(4):447–54.

    Google Scholar 

  • Qin C, Zhang W. Antibacterial property of titanium alkoxide/poplar wood composite prepared by sol–gel process. Mater Lett. 2012;89:101–3.

    Article  Google Scholar 

  • Reinprecht L, Svoradová M, Réh R, Marchal R, Charrier B. Decay resistance of laminated veneer lumbers from european oaks. Wood Res. 2010;55(4):79–90.

    Google Scholar 

  • Reinsch S, Böcker W, Bücker M, Seeger S, Unger B. Development of wood-inorganic composites with enhanced properties and environmental stability. Proceedings 4th international wood and fiber symposium, Kassel, Germany, 10–11 Apr 2002.

    Google Scholar 

  • Rowell RM. Chemical modification of wood: a short review. Wood Mater Sci Eng. 2006;1:29–33.

    Article  Google Scholar 

  • Saka S, Tanno F. Wood-inorganic composites prepared by the sol-gel process V. Fire-resisting properties of the SiO2-P2O5-B2O3 wood-inorganic composites. Mokuzai Gakkaishi. 1996;42:74–80.

    Google Scholar 

  • Saka S, Ueno T. Several Si02 wood-inorganic composites and their fire-resisting properties. Wood Sci Technol. 1997;31:457–66.

    Google Scholar 

  • Saka S, Sasaki M, Tanahashi M. Wood-inorganic composites prepared by sol-gel processing I. Wood-inorganic composites with porous structure. Mokuzai Gakkaishi. 1992;38:1043–9.

    Google Scholar 

  • Sandermann W, Augustin H. Chemical investigations on the thermal decomposition of wood – part II: investigations by means of differential thermal analysis. Eur J Wood Wood Prod. 1963;21:305–15.

    Article  Google Scholar 

  • Schartel B, Hull TR. Development of fire-retarded materials – interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.

    Article  Google Scholar 

  • Schneider MH, Brebner KI. Wood-polymer combinations: the chemical modification of wood by alkoxysilane coupling agents. Wood Sci Technol. 1985;19:67–73.

    Article  Google Scholar 

  • Schultz TP, Militz H, Freeman MH, Goodell B, Nicholas DD eds. Development of Commercial Wood Preservatives ACS symposium series 982. 2008.

    Google Scholar 

  • Sebe G, Brook MA. Hydrophobization of wood surfaces: covalent grafting of silicon polymers. Wood Sci Technol. 2001;35:269–82.

    Article  Google Scholar 

  • Sèbe G, De Jeso B. The dimensional stabilisation of maritime pine sapwood (Pinus pinaster) by chemical reaction with organosilicon compounds. Holzforschung. 2000;54:474–80.

    Article  Google Scholar 

  • Sebe G, Tingaut P, Safou-Tchiama R, Petraud M, Grelier S, De Jeso B. Chemical reaction of maritime pine sapwood (Pinus pinaster Soland) with alkoxysilane molecules: a study of chemical pathways. Holzforschung. 2004;58:511–8.

    Article  Google Scholar 

  • Shabir Mahr M, Hübert T, Sabel M, Schartel B, Bahr H, Militz H. Fire retardancy of sol–gel derived titania wood-inorganic composites. J Mater Sci. 2012a;47:6849–61.

    Article  Google Scholar 

  • Shabir Mahr M, Hübert T, Schartel B, Bahr H, Sabel M, Militz H. Fire retardancy effects in single and double layered sol–gel derived TiO2 and SiO2-wood composites. J Sol-Gel Sci Technol. 2012b;64:452–64.

    Article  Google Scholar 

  • Shabir Mahr. Wood modification with titania and silica based precursors: a novel approach to prepare multifunctional sol-gel derived TiO2/SiO2 wood-inorganic composites. Dissertation, University of Göttingen. 2013.

    Google Scholar 

  • Shabir Mahr M, Hübert T, Stephan I, Bücker M, Militz H. Reducing copper leaching from treated wood by sol-gel derived TiO2 and SiO2 depositions. Holzforschung. 2013a;67(4):429–35.

    Google Scholar 

  • Shabir Mahr M, Hübert T, Stephan I, Militz H. Decay protection of wood against brown-rot fungi by titanium alkoxide impregnations. Int Biodeter Biodegr. 2013b;77:56–62.

    Article  Google Scholar 

  • Shen DK, Gua S, Bridgwater AV. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J Anal Appl Pyrolysis. 2010;87:199–206.

    Article  Google Scholar 

  • Sun QF, Yu HP, Liu YX, Li J, Lu Y, Hunt JF. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating. Holzforschung. 2010;64:757–61.

    Article  Google Scholar 

  • Sun QF, Lu Y, Xia YZ, Yang DJ, Li J, Liu YX. Flame retardancy of wood treated by TiO2/ZnO coating. Surf Eng. 2012;28:555–9.

    Article  Google Scholar 

  • Tanno F, Saka S, Kakabe K. Antimicrobial TMSAC-added wood-inorganic composites prepared by the sol-gel process. Mater Sci Res Int. 1997;3(3):137–42.

    Google Scholar 

  • Tanno F, Saka S, Yamamoto A, Takabe K. Antimicrobial TMSAH-added wood-inorganic composites prepared by sol-gel process. Holzforschung. 1998;52:365–70.

    Article  Google Scholar 

  • Teaca C-A, Rosu D, Bodirlau R, Rosu L. Structural changes in wood under artificial UV light irradiation determined by FTIR spectroscopy and color measurements – a brief review. Bioresources. 2013;8:1478–507.

    Article  Google Scholar 

  • Terzi E, Nami Kartal S, White RH, Shinoda K, Imamura Y. Fire performance and decay resistance of solid wood and plywood treated with quaternary ammonia compounds and common fire retardants. Eur J Wood Prod. 2011;69:41–51.

    Article  Google Scholar 

  • Tshabalala MA, Gangstad JE. Accelerated weathering of wood surfaces coated with multifunctional alkoxysilanes by sol-gel deposition. J Coat Technol. 2003;75:37–43.

    Article  Google Scholar 

  • Tshabalala MA, Li-Piin Sung L-P. Wood surface modification by in-situ sol-gel deposition of hybrid inorganic–organic thin films. J Coat Technol Res. 2007;4:483–90.

    Article  Google Scholar 

  • UL 94 tests for flammability of plastic materials for parts in devices and appliances. Underwriters Laboratories, Northbrook, IL.

    Google Scholar 

  • Unger B, Bücker M, Reinsch S, Hübert T. Chemical aspects of wood modification by sol–gel-derived silica. Wood Sci Technol. 2013;47:83–104.

    Article  Google Scholar 

  • UNI 8457 Combustible products liable to direct contact with fire on one surface: reaction to fire on applying a small flame. Italien Organization for Standardization; 2008.

    Google Scholar 

  • Verma P, Dyckmans J, Militz H, Mai C. Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity. Appl Microbiol Biotechnol. 2008;80:125–33.

    Article  Google Scholar 

  • Vignali F, Predieri G, Feci E, Palanti S, Baratto MC, Basosi R, Callone E, Muller K. Interpenetration of wood with NH2R-functionalized silica xerogels anchoring copper(II) for 45 preservation purposes. J Sol-Gel Sci Technol. 2011;60(3):445–56. doi:10.1007/s10971-011-2557-x.

    Article  Google Scholar 

  • Wang Q, Jian L, Winandy JE. Chemical mechanism of fire retardance of boric acid on wood. Wood Sci Technol. 2004;38:375–89.

    Article  Google Scholar 

  • Wang CY, Piao C, Lucas C. Synthesis and characterization of superhydrophobic wood surfaces. J Appl Polym Sci. 2011;119:1667–72.

    Article  Google Scholar 

  • Wang X, Liu J, Chai Y. Thermal, mechanical, and moisture absorption properties of wood-TiO2 composites prepared by a sol-gel process. Bioresources. 2012;7:893–901.

    Google Scholar 

  • Wang B, Feng M, Zhan H. Improvement of wood properties by impregnation with TiO2 via ultrasonic-assisted sol-gel process. RSC Adv. 2014;4(99):56355–60.

    Article  Google Scholar 

  • Wegner TH. In: Mayer JA, editor. Encyclopedia of polymer science and engineering. New York: Wiley; 1989.

    Google Scholar 

  • Weigenand O, Militz H, Tingaut P, Sebe G, de Jeso B, Carsten Mai C. Penetration of amino-silicone micro- and macro-emulsions into Scots pine sapwood and the effect on water-related properties. Holzforschung. 2007;61:51–9.

    Article  Google Scholar 

  • Weigenand O, Humar M, Daniel G, Militz H, Mai C. Decay resistance of wood treated with amino silicon compounds. Holzforschung. 2008;62:112–8.

    Article  Google Scholar 

  • Weil ED, Hirschler MM, Patel NG, Said MM, Shakir S. Oxygen index correlations to other fire tests. Fire Mater. 1992;16:159–67.

    Article  Google Scholar 

  • Wu GM, Schartel B, Yu D, Kleemeier M, Hartwig A. Synergistic fire retardancy in layered-silicate nanocomposite combined with low-melting phenysiloxane glass. J Fire Sci. 2012;30:69–87.

    Article  Google Scholar 

  • Yamaguchi H. Properties of silicic acid compounds as chemical agents for impregnation and fixation of wood. Mokuzai Gakkaishi. 1994a;40(8):830–7.

    Google Scholar 

  • Yamaguchi H. Preparation and physical properties of wood fixed with silicic acid compounds. Mokuzai Gakkaishi. 1994b;40(8):838–45.

    Google Scholar 

  • Yamaguchi H. Low molecular weight silicic acid – inorganic compound complex as wood preservative. Wood Sci Technol. 2002;36:399–417.

    Article  Google Scholar 

  • Yamaguchi H. Silicic acid: boric acid complexes as wood preservatives. Ability of treated wood to resist termites and combustion. Wood Sci Technol. 2003;37:287–97.

    Article  Google Scholar 

  • Yamaguchi H, Östman BA-L. Complexes of silicic acid polymer-inorganic compounds as wood preserving agents. Mokuzai Hozon (Wood Preserv). 1996;22(5):254–61.

    Article  Google Scholar 

  • Zhang W. Leachability of boron from trimethyl borate (TMB)/Poplar wood composites prepared by solgel process. Wood Res. 2015;60:471–6.

    Google Scholar 

  • Zheng R, Tshabalala MA, Li Q, Wang H. Weathering performance of wood coated with a combination of alkoxysilanes and rutile TiO2 hierarchical nanostructures. Bioressources. 2015;10:7053–64.

    Google Scholar 

Download references

Acknowledgment

We are highly grateful to our colleagues Brita Unger, Ina Stephan, Carlo Tiebe, Heidi Lorenz, Michael Bücker, Bernd Schartel, Birgit Strauss, Martin Sabel, and Kerstin Klutzny for their long-lasting cooperation in our research endeavors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hübert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Hübert, T., Shabir Mahr, M. (2016). Sol-gel Wood Preservation. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_106-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_106-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Sol-gel Wood Preservation
    Published:
    05 April 2017

    DOI: https://doi.org/10.1007/978-3-319-19454-7_106-2

  2. Original

    Sol-gel Wood Preservation
    Published:
    02 July 2016

    DOI: https://doi.org/10.1007/978-3-319-19454-7_106-1