Skip to main content

Computer Simulations in Materials Science and Engineering

Definitions, Types, Methods, Implementation, Verification, and Validation

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Materials Structures, Properties, Processing and Performance

Abstract

Computer simulation is described as a comprehensive method for studying materials and materials systems. Computational methods used on different length and time scales for the simulation of materials structures and behavior are described along with process features involved in the implementation, verification, and validation of computer simulations. Computer simulation in the context of integrated computational materials engineering as this relates to the Materials Genome Initiative concept for materials innovation and advanced materials development and deployment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham F, Broughton J, Bernstein N, Kaxiras E (1998) Spanning the length scales in dynamic simulation. Comput Phys 12:538–556

    Article  Google Scholar 

  • Bathe K (1982) Finite element procedures in engineering analysis. Prentice Hall, Cambridge, UK

    Google Scholar 

  • Benson DJ (1992) Computational methods in Lagrangian and Eulerial hydrocodes. Comput Methods Appl Mech Eng 99(2–3):235–394

    Article  Google Scholar 

  • Bonora N, Brown E (eds) (2014) Numerical modeling of materials under extreme conditions. Springer, New York

    Google Scholar 

  • Broughton JQ, Abrahams FF, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales; methodology and applications. Phys Rev B60:2391–2403

    Article  Google Scholar 

  • Bulatov VU, Abraham F, Kubin L, Devrince B, Yip S (1998) Connecting atomistic and mesoscale simulations of crystal plasticity. Nature 391:669–672

    Article  Google Scholar 

  • Calvin J, Larsen J (2013) Extreme physics: properties and behavior of matter at extreme conditions. Cambridge Univ Press, Cambridge, UK

    Book  Google Scholar 

  • Cao W, Chen S-L, Zhang F, Wu K, Yang Y, Chang YA, Schmid-Fetzer R, Oates WA (2009) PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. CALPHAD Comput Coupling Phase Diagr Thermochem 33:328–342

    Article  Google Scholar 

  • Car R, Parinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  Google Scholar 

  • Cook RD, Malkus DS, Plesha ME, Witt RJ (2001) Concepts and applications of finite element analysis, 4th edn. Lavoisier SAS, Paris

    Google Scholar 

  • Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  • Dantzig JA, Rappaz M (2009) Solidification. CRC Press/Taylor and Francis Group, LCC, Boca Raton

    Book  Google Scholar 

  • Daw MS (1988) Model of metallic cohesion: the embedded atom method. Phys Rev B 39:7441–7452

    Article  Google Scholar 

  • Epstein J (1999) Agent-based computational models and generative social science. Complexity 4(5):41–57

    Article  Google Scholar 

  • Geers MGD, Yvonnet J (2016) Multiscale modeling of microstructure-property relations. MRS Bull 41(8):610–616

    Article  Google Scholar 

  • Grüne-Yanoff T, Weirich P (2010) Philosophy of simulation. Simul Gaming Interdiscip J 41(1):1–31

    Google Scholar 

  • Hayhurst CJ, Ranson HJ, Gardner DJ, Birnbaum NK (1995) Modeling of microparticle hypervelocity oblique impacts on thick targets. Int J Impact Eng 17:375–386

    Article  Google Scholar 

  • Hernandez VS, Murr LE, Anchondo IA (2006) Experimental observations and computer simulations for metallic projectile fragmentation and impact crater development in thick metal targets. Int J Impact Eng 32:1981–1999

    Article  Google Scholar 

  • Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160

    Article  Google Scholar 

  • Humphreys P, Imbert C (eds) (2010) Models, simulations and representations. Routledge Publishers, London

    Google Scholar 

  • Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and temperatures. In: Proceedings of the 7th international symposium. O Ballistics, The Hague

    Google Scholar 

  • Kadau K, Germann T, Lomdahl P (2004) Large-scale molecular dynamics simulation of 19 billion particles. J Mod Phys C 15:193–201

    Article  Google Scholar 

  • Kosloff R (1988) Time-dependent quantum-mechanical methods for molecular dynamics. J Chem Phys 92:2087–2100

    Article  Google Scholar 

  • Le Sar R (2014) Introduction to computational materials science. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Lin H-Q (2016) Boosting computational capabilities. Nat Mater 15:693–694

    Article  Google Scholar 

  • Liu GR, Liu MB (2003) Smoothed particle hydrodynamics. A meshfree particle method. Scientific, Singapore

    Book  Google Scholar 

  • Maitland G, Rigby M, Smith E, Wakeham W (1981) Intermolecular forces – their origins and determination. Clarendon Press, Oxford

    Google Scholar 

  • Marzari N (2016) Materials modelling: the frontiers and the challenges. Nat Mater 15:381–382

    Article  Google Scholar 

  • Nightingale M, Umrigar C (eds) (1999) Quantum Monte Carlo methods in physics and chemistry. Springer, New York

    Google Scholar 

  • Phillips R (2003) Crystals, defects and microstructures – modeling across scales. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Regli W, Rossignac J, Shapiro V, Srinivasan V (2016) The new frontiers in computational modeling of materials structures. NISTIR 8110, Natl Inst of Standards and Technol, U. S. Dept of Commerce, Washington, DC. Feb, 2016, 24pp

    Book  Google Scholar 

  • Robinson L (2014) New TMS study tackles the challenge of integrating materials simulations across length scales. JOM 66:1356–1359

    Article  Google Scholar 

  • Roy S (2005) Recent advances in numerical methods for fluid dynamics and heat transfer. J Fluids Eng 127(4):629–630

    Article  Google Scholar 

  • Saal JA, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65(1):1501–1509

    Article  Google Scholar 

  • Steinberg DJ, Cochran SG, Guinan MW (1980) A constitutive model for metals applicable at high strain rates. J Appl Phys 51(3):1498–1502

    Article  Google Scholar 

  • Steinhauser MO (2008) Computational multiscale modeling of solids and fluids – theory and applications. Springer, Heidelberg

    Google Scholar 

  • Steinhauser MO, Hiermaier S (2009) A review of computational methods in materials sciences: examples from shock-wave and polymer physics. Int J Mol Sci 10:5135–5216

    Article  Google Scholar 

  • TMS (2015) Modeling across scales: a roadmapping study for connecting materials models and simulations across length and time scales. The Minerals, Metals and Materials Society (TMS), Warrendale

    Google Scholar 

  • Wang Y, Shang S, Chen L-Q, Liu Z-K (2013) Density functional theory-based database development and CALPHAD automation. JOM 65(1):1533–1539

    Article  Google Scholar 

  • Winsberg E (2003) Simulated experiments: methodology for a virtual world. Philos Sci 70:105–125

    Article  Google Scholar 

  • Winsberg E (2010) Science in the age of computer simulation. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Zerilli FJ, Armstrong RW (1992) The effect of dislocation drag on the stress-strain behavior of fcc metals. Acta Met Mater 40:1803–1809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence E. Murr .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Murr, L.E. (2016). Computer Simulations in Materials Science and Engineering. In: Handbook of Materials Structures, Properties, Processing and Performance. Springer, Cham. https://doi.org/10.1007/978-3-319-01905-5_60-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01905-5_60-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-01905-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Computer Simulations in Materials Science and Engineering
    Published:
    21 April 2017

    DOI: https://doi.org/10.1007/978-3-319-01905-5_60-2

  2. Original

    Computer Simulation in Materials Science and Engineering
    Published:
    31 July 2014

    DOI: https://doi.org/10.1007/978-3-319-01905-5_60-1