Skip to main content

Aperiodic Crystal Structures: Quasicrystals

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Materials Structures, Properties, Processing and Performance
  • 238 Accesses

Abstract

It is remarkable that while the Platonic solids reflect fivefold symmetry in both the icosahedra and the dodecahedron, crystal structures did not represent this symmetry until around 1983 when quasicrystals were discovered. This chapter presents a short overview of quasicrystals and fivefold symmetric structures which have been described over the past three decades. Their relationship to the golden mean or the divine proportion is also briefly discussed. The concept of aperiodic or quasicrystals versus periodic or regular crystals is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bindi L, Steinhardt PJ, Yao N, Lu PJ (2011) Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. Am Mineral 96:928–931

    Article  Google Scholar 

  • Bindi L, Yao N, Lin C, Hollister LS, Andronicas CL, Distler VV, Eddy MP, Kustin A, Kryachka V, MacPherson GL, Steinhards WM, Yudovukaya M, Steinhardt PJ (2015) Decagonite Al(71)Ni(24)Fe(5), a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite. Am Mineral 100:2340–2343

    Article  Google Scholar 

  • Dubois J-M (2012) Properties and applications of quasicrystals and complex metallic alloys. Chem Soc Rev 41:6760–6777

    Article  Google Scholar 

  • Engel M, Demasceno PF, Phillips CL, Glotzen SC (2015) Computational self-assembly of a one-component icosahedral quasicrystal. Nat Mater 14:107–116

    Google Scholar 

  • Henley CL (1991) Cell geometry for cluster-based quasicrystal models. Phys Rev B 43:993–1020

    Article  Google Scholar 

  • Hwang J, Melgarejo ZH, Kalay YE, Kalay I, Kramer MJ, Stone DS, Voyles PM (2012) Nanoscale structure and structural relaxation of Zr50Cu45Al5 bulk metallic glass. Phys Rev Lett 108:195505

    Article  Google Scholar 

  • Kenzari S, Bonina D, Dubois JM, Fournee V (2014) Complex metallic alloys as new materials for additive manufacturing. Sci Technol Adv Mater 15(2):203–207

    Article  Google Scholar 

  • Kim S-H, Kim H, Kim NJ (2015) Brittle intermetallic compound makes ultrastrong, low-density steel with large ductility. Nature 518(7337):77–79

    Article  Google Scholar 

  • Klement W, Willens RH, Duwez P (1960) Non-crystalline structure in solidified gold silicon alloys. Nature 187(4740):869–870

    Article  Google Scholar 

  • Murthy GVS, Roy AK, Minz RK, Mukhopadhyay NK (1999) Microhardness and fracture toughness studies of decagonal quasicrystals in Al-Cu-Co system. J Mater Sci Lett 18(3):255–258

    Article  Google Scholar 

  • Nagoa K, Inuzuka T, Nishimoto K, Edagawa K (2015) Experimental observation of quasicrystal growth. Phys Rev Lett 115:075501–075504

    Article  Google Scholar 

  • Penrose R (1974) The role of aesthetics in pure and applied mathematical research. Bull Inst Math Appl 10:266–271

    Google Scholar 

  • Riste T (ed) (1980) Ordering in strongly fluctuating condensed matter systems. Plenum Press, New York

    Google Scholar 

  • Shechtman D, Blech IA (1985) The microstructure of rapidly solidified Al6Mn. Metall Trans 16A:1005–1012

    Article  Google Scholar 

  • Shechtman D, Blech I, Gratian D, Cahn J (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1953

    Article  Google Scholar 

  • Steurer W (2004) Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z Kristallogr 219:391–446

    Google Scholar 

  • Steurer W, Deloudi S (2009) Crystallography of quasicrystals: concepts, methods and structures. Springer, New York

    Google Scholar 

  • Takakura H, Gomez CP, Yamamoto A, deBoissieu M, Tsai AP (2007) Atomic structure of the binary icosahedral Yb-Cd quasicrystal. Nat Mater 6:58–63

    Article  Google Scholar 

  • Takeuchi S, Iwanaga H, Shibuya T (1991) Hardness of quasicrystals. Jpn J Appl Phys 30:561–562

    Article  Google Scholar 

  • Trebin H-R (ed) (2006) Quasicrystals: structure and physical properties. Wiley, New York

    Google Scholar 

  • Van Smaalen S (2002) Incommensurate crystallography. Oxford University Press, Oxford

    Google Scholar 

  • Verberck B (2015) Quasicrystals: relaxing defects. Mature Phys 11:703–705

    Google Scholar 

  • Wasio NA, Quardokus RC, Forrest RP, Lent CS, Corcelli SA, Christie JA, Henderson KW, Kandel SA (2014) Self-assembly by hydrogen-bonded two-dimensional quasicrystals. Nature 507:86–89

    Article  Google Scholar 

  • Zhang JB, Yu DM, Jia JG (2013) The coming of quasicrystals: discovery, principles and applications. Adv Mater Res 706–708:327–330

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence E. Murr .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Murr, L.E. (2016). Aperiodic Crystal Structures: Quasicrystals. In: Handbook of Materials Structures, Properties, Processing and Performance. Springer, Cham. https://doi.org/10.1007/978-3-319-01905-5_12-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01905-5_12-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-01905-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Aperiodic Crystal Structures: Quasicrystals
    Published:
    26 July 2016

    DOI: https://doi.org/10.1007/978-3-319-01905-5_12-2

  2. Original

    Aperiodic Crystal Structures: Quasicrystals
    Published:
    07 June 2014

    DOI: https://doi.org/10.1007/978-3-319-01905-5_12-1