Skip to main content

Nuclear Treatment and Cell Cycle Synchronization for the Purpose of Mammalian and Primate Somatic Cell Nuclear Transfer (SCNT)

  • Protocol
  • First Online:
Cell Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1524))

Abstract

Mammalian somatic cell nuclear transfer (SCNT) is a technically and biologically challenging procedure inducing rapid reprogramming of the nucleus from the differentiated into the totipotent state in a few hours. This procedure was initially successfully accomplished in farm animals, then in rodents, and more recently in primates and in humans. Though ethical concerns regarding SCNT still exist, this procedure can be utilized to generate patient and disease-specific pluripotent embryonic stem cell lines, which carry a great promise in improving our understanding of major disease conditions and a hope for better therapies and regenerative medicine. In this section, we will survey the existing literature and describe how mouse SCNT is performed and the importance of donor cell treatment and cycle synchronization prior to SCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaenisch R, Hochedlinger K, Blelloch R, Yamada Y, Baldwin K, Eggan K (2004) Nuclear cloning, epigenetic reprogramming, and cellular differentiation. Cold Spring Harb Symp Quant Biol 69:19–27

    Article  CAS  PubMed  Google Scholar 

  2. Markoulaki S, Meissner A, Jaenisch R (2008) Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse. Methods 45:101–114

    Article  CAS  PubMed  Google Scholar 

  3. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  4. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  CAS  PubMed  Google Scholar 

  5. Rideout WM III, Eggan K, Jaenisch R (2001) Nuclear cloning and epigenetic reprogramming of the genome. Science 293:1093–1098

    Article  CAS  PubMed  Google Scholar 

  6. Solter D (2000) Mammalian cloning: advances and limitations. Nat Rev Genet 1:199–207

    Article  CAS  PubMed  Google Scholar 

  7. Shufaro Y, Lacham-Kaplan O, Tzuberi BZ, McLaughlin J, Trounson A, Cedar H, Reubinoff BE (2010) Reprogramming of DNA replication timing. Stem Cells 28:443–449

    CAS  PubMed  Google Scholar 

  8. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

  9. Wilmut I, Paterson L (2003) Somatic cell nuclear transfer. Oncol Res 13:303–307

    Article  PubMed  Google Scholar 

  10. Mitalipov SM, Zhou Q, Byrne JA, Ji WZ, Norgren RB, Wolf DP (2007) Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum Reprod 22:2232–2242

    Article  CAS  PubMed  Google Scholar 

  11. Cibelli JB, Lanza RP, West MD, Ezzell C (2002) The first human cloned embryo. Sci Am 286:44–51

    Article  PubMed  Google Scholar 

  12. Egli D, Chen AE, Saphier G, Ichida J, Fitzgerald C, Go KJ, Acevedo N, Patel J, Baetscher M, Kearns WG, Goland R, Leibel RL, Melton DA, Eggan K (2011) Reprogramming within hours following nuclear transfer into mouse but not human zygotes. Nat Commun 2:488

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer RL, Wolf D, Mitalipov S (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brambrink T, Hochedlinger K, Bell G, Jaenisch R (2006) ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci U S A 103:933–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shufaro Y, Reubinoff BE (2004) Therapeutic applications of embryonic stem cells. Best Pract Res Clin Obstet Gynaecol 18:909–927

    Article  PubMed  Google Scholar 

  16. Turetsky T, Aizenman E, Gil Y, Weinberg N, Shufaro Y, Revel A, Laufer N, Simon A, Abeliovich D, Reubinoff BE (2008) Laser-assisted derivation of human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis. Hum Reprod 23:46–53

    Article  CAS  PubMed  Google Scholar 

  17. Ma H, Morey R, O'Neil RC, He Y, Daughtry B, Schultz MD, Hariharan M, Nery JR, Castanon R, Sabatini K, Thiagarajan RD, Tachibana M, Kang E, Tippner-Hedges R, Ahmed R, Gutierrez NM, Van Dyken C, Polat A, Sugawara A, Sparman M, Gokhale S, Amato P, Wolf DP, Ecker JR, Laurent LC, Mitalipov S (2014) Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campbell KH, Loi P, Otaegui PJ, Wilmut I (1996) Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod 1:40–46

    Article  CAS  PubMed  Google Scholar 

  19. Collas P, Pinto-Correia C, Ponce de Leon FA, Robl JM (1992) Effect of donor cell cycle stage on chromatin and spindle morphology in nuclear transplant rabbit embryos. Biol Reprod 46:501–511

    Article  CAS  PubMed  Google Scholar 

  20. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    Article  CAS  PubMed  Google Scholar 

  21. Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I (1989) An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 86:679–688

    Article  CAS  PubMed  Google Scholar 

  22. Wells DN, Laible G, Tucker FC, Miller AL, Oliver JE, Xiang T, Forsyth JT, Berg MC, Cockrem K, L'Huillier PJ, Tervit HR, Oback B (2003) Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology 59:45–59

    Article  CAS  PubMed  Google Scholar 

  23. Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overström EW, Echelard Y (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17:456–4561

    Article  CAS  PubMed  Google Scholar 

  24. Kues WA, Anger M, Carnwath JW, Paul D, Motlik J, Niemann H (2000) Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biol Reprod 62:412–419

    Article  CAS  PubMed  Google Scholar 

  25. Noggle S, Fung HL, Gore A, Martinez H, Satriani KC, Prosser R, Oum K, Paull D, Druckenmiller S, Freeby M, Greenberg E, Zhang K, Goland R, Sauer MV, Leibel RL, Egli D (2011) Human oocytes reprogram somatic cells to a pluripotent state. Nature 478:70–75

    Article  CAS  PubMed  Google Scholar 

  26. Dalman A, Eftekhari-Yazdi P, Valojerdi MR, Shahverdi A, Gourabi H, Janzamin E, Fakheri R, Sadeghian F, Hasani F (2009) Synchronizing cell cycle of goat fibroblasts by serum starvation causes apoptosis. Reprod Domest Anim 45:e46–e53

    Google Scholar 

  27. Kurosaka S, Nagao Y, Minami N, Yamada M, Imai H (2002) Dependence of DNA synthesis and in vitro development of bovine nuclear transfer embryos on the stage of the cell cycle of donor cells and recipient cytoplasts. Biol Reprod 67:643–647

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoel Shufaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shufaro, Y., Reubinoff, B.E. (2017). Nuclear Treatment and Cell Cycle Synchronization for the Purpose of Mammalian and Primate Somatic Cell Nuclear Transfer (SCNT). In: Banfalvi, G. (eds) Cell Cycle Synchronization. Methods in Molecular Biology, vol 1524. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6603-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6603-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6602-8

  • Online ISBN: 978-1-4939-6603-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics