Skip to main content

Potential of Vermicomposting Technology in Solid Waste Management

  • Chapter
Current Developments in Solid-state Fermentation

Abstract

“How will solid waste be managed?” is an important question demanding attention due to the rapid growth in solid waste generation worldwide. Urban conglomerations, with their ever-increasing population and consumerist lifestyle generate voluminous solid wastes. Apart from these sources, industries are other potential and relatively new source of solid wastes. Industrial growth is resulting in greater goods production, improved livelihood opportunities for urbanites but degraded environmental quality of cities. The key problems posed by industrial wastes include: a) Contamination of soils and surface and subsurface water by pollutants present in the sludge through leaching, b) The contamination of environment by heavy metals and chemicals, c) Colour imparted to the water bodies or soils and d) Odour problem inviting public attention. The ecologically and commercially sustainable management of industrial sludges is a major issue faced by all Indian industries due to stringent National disposal standards regardless of size or location of the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad M, Noguera P & Bures S, 2001, National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresource Technology, 11, 197–200.

    Article  Google Scholar 

  • Albanell E, Plaixaks J & Cabrero T, 1988, Chemical change during vermicomposting (Eisenia foetida) of sheep manure mixed with cotton industrial waste. Biology Fertility and Soil, 6, 266–269.

    CAS  Google Scholar 

  • Atiyeh RM, Arancon NQ, Edwards CA & Metzger JD, 2002, The influence of earthworm-processed pig manure on the growth and productivity of marigolds. Bioresource Technology, 81, 103–108.

    Article  CAS  Google Scholar 

  • Atiyeh RM, Domniguez J, Subler S, Edwards CA, 2000, Changes in biochemical properties of Cow manure during processing by eathworms (Eisenia andrei, Bouche) and the effects on seedling growth, Pedobiologia, 44(6), 709–724.

    Article  Google Scholar 

  • Banu J R, Esakkiraj S, Nagendran R & Logakanthi S, 2005, Biomanagement of petrochemical sludge using an exotic earthworm Eudrilus eugeniae. Journal of Environmental Biology, 26, 43–47.

    Google Scholar 

  • Banu JR, Logakanthi S & Vijayalakshmi GS, 2001, Biomanagement of paper mill sludge using an indigenous (Lampito mauritii) and two exotic (Eudrilus eugeniae and Eisenia foetida) earthworms, Journal of Environmental Biology, 22(3), 181–185.

    CAS  Google Scholar 

  • Baruah TC & Barthakur HP, 1997, A textbook of Soil Analysis. New Delhi. Vikas Publishing House Pvt. Ltd.

    Google Scholar 

  • Beetz A, 1999, Worms for Composting (Vermicomposting). ATTRA-National Sustainable Agriculture Information Service, Livestock Technical Note.

    Google Scholar 

  • Benitez E, Nogales, R, Elvira, C, Masciandaro G & Ceccanti B, 1999, Enzyme activities as indicators of the stabilization of sewage sludge composting with Eisenia foetida, Bioresource Technology, 6, 297–303.

    Article  Google Scholar 

  • Bhatnagar RK & Palta R, 1996, Earthworm Vermiculture and Vermicomposting. Kalyani Publishers, Ludhiana, India.

    Google Scholar 

  • Blair JM, Parmelee RW & Lavelle P, 1995, Influences of earthworms on biogeochemistry. In: Hendrix, RE (Ed), Earthworm Ecology and Biogeography in North America. Boca Raton, Florida, CRC Press Inc., pp. 127–158.

    Google Scholar 

  • Bogdanov P, 1996, Commercial Vermiculture: How to Build a Thriving Business in Redworms. VermiCo Press, Oregon. 83 pp.

    Google Scholar 

  • Bolton H, Elliott LF, Papendick RI & Bezdicek DF, 1985, Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biology and Biochemistry, 17, 297–302.

    Article  CAS  Google Scholar 

  • Bouche MB, 1977, Strategies lombriciennes. In: Soil organism as component of Ecosystem. Lohn, U. and Person, T. (eds.). Biological Bulletin (Stockholm). 2, 122–132.

    Google Scholar 

  • Burns RG, 1982, Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Biololgy and Biochemistry, 14, 423–427.

    Article  CAS  Google Scholar 

  • Butt KR, 1993, Utilisation of solid paper-mill sludge and spent brewery yeast as feed for soil-dwelling earthworms. Bioresource Technology, 44, 105–107

    Article  CAS  Google Scholar 

  • Cavender ND, Atiyeh RM & Knee M, 2003, Vermicompost stimulates micorrhizal colonization of roots of Sorghum bicolor at the expense of plant growth. Pedobiologia.

    Google Scholar 

  • Chan LPS & Griffiths DA, 1988. The vermicomposting of pre-treated pig manure. Biological Wastes, 24, 57–69.

    Article  Google Scholar 

  • Chaudhuri PS, Pal TK, Bhattacharjee G & Dey SK, 2003, Rubber leaf litters (Hevea brasiliensis, Var RRIM 600) as vermiculture substrate for epigeic earthworms, Perionyx excavatus, Eudrilus eugeniae and Eisenia fetida. Pedobiologia, 47(5-6), 796–800.

    Google Scholar 

  • Crawford JH, 1983, Review of composting. Process Biochemistry, 18, 14–15.

    Google Scholar 

  • Das J & Talukdar MC, 2001, Integrated effect of earthworms and celluloytic microorganism in vermicomposting. In: Recent advances in Biofertilizer Technology (Eds): Yadav, A.K., Chaudhari, S.R., Motsard, M.R.) Published by Society for Promotion and Utilisation of Resource and Technology, New Delhi.

    Google Scholar 

  • Dash MC, Satpathy B, Behera N & Dei C, 1984, Gut load and turnover of soil, plant and fungal material by Drawida calebi, a tropical earthworm, Industrial Reviews on Ecological Biology of Soil, 21, 387–393.

    Google Scholar 

  • Datar MT, Rao MN & Reddy S, 1997, Vermicomposting-a technological option for solid waste management, Journal of Solid Waste Technology Management, 24(2), 89–93.

    CAS  Google Scholar 

  • Delgado M, Bigeriego M, Walter I & Calbo R, 1995, Use of California red worm in sewage sludge transformation. Turrialba, 45, 33–41.

    Google Scholar 

  • Dominguez J & Edwards CA, 1997, Effects of socking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. Soil Biology Biochemistry, 29, 743–6.

    Article  CAS  Google Scholar 

  • Dominguez J, Edwards CA & Ashby J, 2001, The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oligochaeta) in cattle waste solids. Pedobiologia, 45, 341–353.

    Article  Google Scholar 

  • Edwards CA, 1998, The Use of Earthworms in the Breakdown and Management of Organic Wastes. In: Edwards, CA. (ed), Earthworm Ecology. St. Lucie Press, Boca Raton, pp. 327–354.

    Google Scholar 

  • Edwards CA, 1988, Breakdown of animal, vegetable and industrial organic wastes by earthworm. Agriculture Ecosystem Environment, 24 L, 21–31.

    Google Scholar 

  • Edwards CA & Bohlen PJ, 1996, Biology and Ecology of Earthworms. Chapman and Hall, London. P. 426.

    Google Scholar 

  • Edwards CA & Burrows I, 1988, The potential of earthworm composts as plant growth media. In: Earthworms in Waste and Environment Management. (Eds.) CA. Edwards and E.F. Neuhaser, SPB Academic Press. The Hague, The Netherlands, 21–32.

    Google Scholar 

  • Edwards CA & Lofty JR, 1972, Biology of Earthworms. Chapman Hall, London.

    Google Scholar 

  • Elvira C, Goicoechea M, Sampdro L, Mato S & Nogales R, 1996, Bioconversion of solid paper-pulp mill sludge by earthworms. Bioresource Technology, 75, 173–177.

    Article  Google Scholar 

  • Elvira C, Sampedro L, Benitez E & Nogales R, 1998, Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: a pilot scale study. Bioresource Technology, 63, 205–211.

    Article  CAS  Google Scholar 

  • Elvira C, Sampedro L, Dominguez J & Mato, S, 1997, Vermicomposting of wastewater sludge from paper-pulp industry with nitrogen rich materials. Soil Biology and Biochemistry, 29, 759–762.

    Article  CAS  Google Scholar 

  • Fox D, 2001, The Worm that Earned. New Scientist, 15, 32–34.

    Google Scholar 

  • Frankenberger WT, Johanson JB & Nelson CO, 1983, Enzyme activity in sewage sludge amended soils. Soil Biology and Biochemistry, 15, 543–549.

    Article  CAS  Google Scholar 

  • Frederickson J, Butt KR, Morris, RM & Daniel, C, 1997, Combining vermiculture with traditional green waste composting system. Soil Biology and Biochemistry, 29, 725–730.

    Article  CAS  Google Scholar 

  • Gaddie RE (Sr.) & Douglas DE, 1975, Earthworms for Ecology and Profit. Scientific Earthworm Farming. Bookworm Publishing Company, Cal. 1, 180

    Google Scholar 

  • Gajalakshmi S & Abbasi SA, 2004a, Earthworms and vermicomposting. Indian Journal of Biotechnolgy, 3, 486–494.

    Google Scholar 

  • Gajalakshmi S & Abbasi SA, 2004b, Neem leaves as source of fertilizer-cum-pesticide vermicomposting. Bioresource Technology, 92(3), 291–296.

    Article  CAS  Google Scholar 

  • Gajalakshmi S, Ramasamy EV & Abbasi, SA, 2001, Potential of two epigeic and two anecic earthworm species in vermicomposting of water hyacinth. Bioresource Technology, 76(3),177–180.

    Article  CAS  Google Scholar 

  • Gajalakshmi S, Ramasamy EV & Abbasi SA, 2002, Vermi-composting of different forms of water hyacinth by the earthworm Eudrilus eugeniae, Kinberg. Bioresource Technology, 82(2), 165–169.

    Article  CAS  Google Scholar 

  • Gajalakshmi S, Ramasamy EV & Abbasi SA, 2005, Composting-vermicomposting of leaf litter ensuing from the trees of mango (Mangifera indica). Bioresource Technology, 96, 1057–1061.

    Article  CAS  Google Scholar 

  • Gandhi M, Sangwan V, Kapoor KK & Dilbaghi N, 1997, Composting of household wastes with and without earthworms. Environment and Ecology, 15, 432–437.

    Google Scholar 

  • Garcia C, Hernandez T & Costa F, 1997, Potential use of Dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil Science Plant An. 28, 123–134.

    CAS  Google Scholar 

  • Garcia-Gomez A, Bernal MP & Roig A, 2002, Growth of ornamental plants in two composts prepared from agro-industrial wastes. Bioresource Technology, 83, 81–87.

    Article  CAS  Google Scholar 

  • Garg VK, Kaushik P & Dilbaghi N, 2006, Vermiconversion of wastewater sludge from textile mill spiked with anaerobically digested biogas plant slurry employing Eisenia foetida. Ecotoxicolgy and Environment Safety, 65(3), 412–419.

    Article  CAS  Google Scholar 

  • Garg VK, Subhash Chand, Chhillar A & Yadav A, 2005, Growth and reproduction of Eisenia foetida in different animal wastes during vermicomposting. Applied Ecology and Environmetal Research, 3(2), 51–59.

    Google Scholar 

  • Georg, 2004. Feasibility of Developing the Organic and Transitional Farm Market for Processing Municipal and Farm Organic Wastes Using Large-Scale Vermicomposting. Good Earth Organic Resources Group, Halifax, Nova Scotia. More information available from http://www.alternativeorganic.com.

  • Ghosh M, Chattopadhyay GN & Baral K, 1999, Transformation of phosphorus during vermicomposting, Bioresource Technology, 69, 149–154.

    Article  CAS  Google Scholar 

  • Gobi M, Balamurugan V & Vijayalakshmi GS, 2001, Studies on the composting a fungi of coir waste by using Phanerochaete chrysopsporium and the earthworms, Eudrilus eugeniae. Journal of Environmental Pollution, 8(1), 45–48.

    Google Scholar 

  • Gouin FR, 1998, Using compost in the ornamental horticulture industry. In: Brown, S., Angle, J.S., Jacobs, L. (Eds.), Beneficial Co-utilization of Agricultural, Municipal and Industrial Bioproducts. Kluwer Academic Publishers, Netherlands, pp. 131–138.

    Google Scholar 

  • Govindan VS, 1997, Vermiculture and vemicomposting. In: Ecotechnology for Pollution Control and Environmental Management, (eds.) Trivedy RK and Kumar Arvind). Enviro Media, Karad, India pp: 49–57.

    Google Scholar 

  • Graziazo PL & Casalicchio G, 1987, Use of worm casting technology on sludge and municiple waste: development and application. In: On earthworm selected symposia and monographs. (Eds.). M. Pagliai, P. Omodeo, Muchi, Modena, Italy, pp. 459–464.

    Google Scholar 

  • Gunadi B, Blount C & Edwards CA, 2002, The growth and fecundity of Eisenia foetida (Savigny) in cattle solids pre-composted for different periods. Pedobiologia, 46, 15–23.

    Article  Google Scholar 

  • Gunadi B & Edwards CA, 2003, The effect of multiple application of different organic wastes on the growth, fecundity and survival of Eisenia fetida. Pedobiologia, 47(4), 321–330.

    Article  Google Scholar 

  • Gupta A, 1997, Evaluation of the waste composting potential of the earthworm Octochaetona seroata, Journal of Ecotoxicology and Environmental Monitoring, 7, 39–44.

    Google Scholar 

  • Gupta R, Mutiyar PK, Rawat NK, Saini MS & Garg VK, 2007, Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia foetida. Bioresource Technology, 98(13), 2605–2610.

    Article  CAS  Google Scholar 

  • Haimi J & Huhta V, 1986, Capacity of various organic residues to support adequate earthworm biomass in vermicomposting. Biol. Fertil Soils. 2, 23–27.

    Article  Google Scholar 

  • Hallatt L, Viljoen SA & Reinecke AJ, 1990, Moisture requirement in life cycle of Perionyx excavatus (Oligochaeta), Soil Biology and Biochemistry, 12, 1333–1340.

    Google Scholar 

  • Hartenstein, R, 1978, Use of Eisenia foetida in organic recycling based on laboratory experiments. USEPA Document EPA-600 12-78-078, 155 165.

    Google Scholar 

  • Hartenstein R & Hartenstein F, 1981, Physicochemical changes effected in activated sludge by the earthworm Eisenia foetida. Journal of Environmental Quality, 10, 372–376.

    Article  CAS  Google Scholar 

  • Hesse PR, 1971. A Textbook of Soil Chemical Analysis. New York: Chemical Publishing Co., Inc.

    Google Scholar 

  • Huhta V & Haimi J, 1988, Reproduction and biomass of Eisenia foetida in domestic waste. In, Earthworms in waste and environmental management, edited by C.A. Edwards and E.F. Neuhauser, pp. 65 69, SPB Academic Publishing, The Hague, The Netherlands.

    Google Scholar 

  • Ismail SA, 2005, The Earthworm Book. Other India Press, Goa, India.

    Google Scholar 

  • Ismail SA, 1997, Vermicology “Biology of Earthworms”. Orient Longman Ltd. Chennai, India.

    Google Scholar 

  • Jambhekar HA, 1992, Use of earthworm as a potential source to decompose organic waste. In: Proceedings of the National Seminar on Organic Farming. Mahatama Phule Krishi Vidyapeeth, College of Agriculture, Pune, pp. 52–53.

    Google Scholar 

  • Jeyabal A & Kuppuswamy G, 2001, Recycling of organic wastes for the production of vermicompost and its response in rice-legume cropping system and soil fertility, European Journal of Agronomy, 15(3), 153–170.

    Article  CAS  Google Scholar 

  • Kale RD, Bano K & Krishnamoorthy RV, 1982, Potential of Perionyx excavatus for utilization of organic wastes. Pedobiologia. 23, 419–425.

    Google Scholar 

  • Kale RD, Banu K, Sreenivasa MN & Bagyaraj DJ, 1987, Influence of worm cast on the growth and micorrhizal colonization of two ornamental plants. South Indian Horticulture, 35(5), 433–437.

    Google Scholar 

  • Kale RD, Mallesh Bano K & Bagyaraj DJ, 1992, Influence of vermicompost application on the available macro nutrients and selected microbial population in a paddy field. Soil Biology and Biochemistry, 24, 1317–1320.

    Article  Google Scholar 

  • Kaushik P & Garg VK, 2003, Vermicomposting of mixed solid textile mill sludge and cow dung with epigeic earthworm Eisenia foetida, Bioresource Technology, 90, 311–316.

    Article  CAS  Google Scholar 

  • Kaushik P & Garg VK, 2004, Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues, Bioresource Technology, 94, 203–209.

    Article  CAS  Google Scholar 

  • Kaviraj & Sharma S, 2003, Municipal solid waste management through vermicomposting employing exotic and local species of earthworms, Bioresource Technology, 90, 169–173.

    Article  CAS  Google Scholar 

  • Lee KE, 1985. Earthworms: Their Ecology and Relationships With Soil and Land Use. Academic Press, Sydney.

    Google Scholar 

  • Lee KE, 1992, Some trends opportunities in earthworm research, Or: Darwin’s children-The future of our discipline. Soil Biology and Biochemistry, 24, 1765–1771.

    Article  Google Scholar 

  • Loehr RC, Neuhauser EF & Malecki MR, 1985, Factors affecting the vermistabilization process, Water Research, 19, 1311–1317.

    Article  Google Scholar 

  • Loh TC, Lee YC, Liang JB & Tan D, 2004, Vermicomposting of cattle and goat manures by Eisenia foetida and their growth and reproduction performance, Bioresource Technology, 30, 298–303.

    Google Scholar 

  • Maboeta MS & Rensburg L, 2003, Vermicomposting of industrially produced woodchips and sewage sludge utilizing Eisenia fetida, Ecotoxicology and Environment Safety, 56, 265–270.

    Article  CAS  Google Scholar 

  • Manna MC, Singh M, Kundu S, Tripathi AK & Takkar PN, 1997, Growth and reproduction of the vermicomposting earthworm Perionyx excavatus as influenced by food materials, Biol Fertil Soils, 24, 129–132.

    Article  CAS  Google Scholar 

  • Martin DL & Gershuny G, 1992, The Rodale Book of Composting. Pennsylvania Rodale Press.

    Google Scholar 

  • Materechera SA, 2002, Nutrient availability and maize growth in a soil amended with earthworm casts from a South African indigenous species, Bioresource Technology, 84, 197–201.

    Article  CAS  Google Scholar 

  • Mba CC, 1996, Treated-cassava peel vermicomposts enhanced earthworm activities and cowpea growth in field plots. Resource Conservation and Recycling, 17, 219–226.

    Article  Google Scholar 

  • Mitchell A, 1997, Production of Eisenia foetida and vermicompost from feedlot cattle manure, Soil Biology and Biochemistry, 29, 763–766.

    Article  CAS  Google Scholar 

  • Moore AW & Russel JS, 1972, Factors affecting dehydrogenase activity as an index of soil fertility, Plant Soil, 37, 675–682.

    Article  CAS  Google Scholar 

  • Mpoame M & Nguekam AG, 1994, Effect of various substrates on production of Eudrilus eugeniae (Oligochaeta). Tropicultura, 12, 91–93.

    Google Scholar 

  • Myers R, 1969, The ABCs of the Earthworm Business, Shields Publications, Eagle River, Wisconsin, USA. 64 p.

    Google Scholar 

  • Narayana J, 2001, Vermicomposting of vegetable waste and its application in seed germination, Journal of Environmental Pollution, 8(1), 71–73.

    Google Scholar 

  • Ndegwa PM & Thompson SA, 2001, Integrating composting and vermicomposting in the treatment and bioconversion of biosolids, Bioresource Technology, 76, 107–112.

    Article  CAS  Google Scholar 

  • Ndegwa PM, Thompson SA & Das KC, 2000, Effects of stocking density and feeding rate on vermicomposting of biosolids, Bioresource Technology, 71, 5–12.

    Article  CAS  Google Scholar 

  • Neuhauser EF, Hartenstein R & Kaplan DL, 1980, Growth of the earthworm Eisenia foetida in relation to population density and food rationing, OIKOS, 35, 93–98.

    Article  Google Scholar 

  • Neuhauser EF, Loehr RC & Malecki MR, 1988, The potential of earthworms for managing sewage sludge, In: Edwards, C.A., Neuhauser, E.F. (eds) Earthworms in Waste and Environmental Management. SPB Academic Publishing, The Hague, pp. 9–20.

    Google Scholar 

  • Nogales R, Celia C & Benitez E, 2005, Vermicomposting of winery wastes: a laboratory study, Journal of Environment Science Health, Part B, 40, 659–673.

    Google Scholar 

  • Nogales R, Elvira C, Benitez E, Thompson R & Gomez M, 1999, Feasibility of vermicomposting dairy biosolids using a modified system to avoid earthworm mortality, Journal of Environment Science Health, 34, 151–169.

    Article  CAS  Google Scholar 

  • Orozco FH, Cegarra J, Trujillo LM & Roig A, 1996, Vermicomposting of coffee pulp using the earthworm Eisenia foetida: effects on C and N contents and the availability of nutrients. Biol. Fertil. Soil, 22, 162–166.

    Article  Google Scholar 

  • Padma U, Rao S & Srinivas N, 2002, Eco-friendly disposal of vegetable waste through vermitechnology, Journal of Ecology, 14(2), 155–159.

    Google Scholar 

  • Reinecke AJ & Viljoen SA, 1992, The suitability of Eudrilus engeniae, Perionyx excavatus and Eisenia foetida for vermicomposting in southern Africa in terms of their temperature equivalent, Soil Biology and Biochemistry, 12, 1295–1307.

    Article  Google Scholar 

  • Ronald EG & Donald ED, 1977, Earthworms for Ecology and Profit, Vol. 1: “Scientific Earthworm Farming”. Bookworm Publishing Company, Ontario, California.

    Google Scholar 

  • Sainz MJ, Taboada-Castro MT & Vilarino A, 1998, Growth, mineral nutrition and micorrhizal colonization of red clover and cucumber plants grown in soil amended with composted urban wastes, Plant and Soil, 205, 85–92.

    Article  CAS  Google Scholar 

  • Sannigrahi AK, Chakraborty S & Borale BC, 2002, Large scale utilization of water hyacinth as raw material for vermicomposting and surface mulching in vegetable cultivation, Ecology and Environment Conservation, 8(3), 269–271.

    Google Scholar 

  • Satchell JE, 1983, Earthworm ecology from Darwin to vermiculture, Chapman and Hall, London.

    Google Scholar 

  • Satchell JE & Martin, K, 1984, Phosphate activity in earthworm faeces, Soil Biology and Biochemistry, 16, 191–194.

    Article  CAS  Google Scholar 

  • Senapati BK, Dash MC, Rane AK & Panda BK, 1980, Observation on the effect of earthworms in the decomposition process in soil under laboratory conditions, Comparative Physiology and Ecology, 5, 140–142.

    Google Scholar 

  • Senapati BK, Pani SC & Kabi A, 1985, Effect of earthworm and green manuring on paddy production in pot culture, In-Proceedings of the National Seminar on Current Trends in Soil Biology, HAU, India. M.M. Mishra, and K.K. Kapoor (eds.), pp. 71–75.

    Google Scholar 

  • Senesi N, 1989. Composted materials as organic fertilizers, Science of Total Environment, 81–82, 521-524.

    Google Scholar 

  • Sharma S, Pradhan K, Satya S & Vasudevan P, 2005, Potentiality of earthworms for waste management and other uses — a review, Journal of American Sciences, 1(1), 4–16.

    Google Scholar 

  • Sherman-Huntoon R, 2000. Latest developments in mid-to-large-scale vermicomposting, Biocycle, 41(11), 51–54.

    Google Scholar 

  • Shinde PH, Naik RK, Nazirkar RB, Kadam SK & Khaire VM, 1992, Evaluation of vermicomposting, In-Proceedings of the National Seminar on organic farming, Mahatma Phule Krishi Vidyapeeth, College of Agriculture, Pune, pp. 54–55.

    Google Scholar 

  • Spiers GA, Gagnon D, Nason GE, Packee EC & Lousier JD, 1986, Effects and importance of indigenous earthworms on decomposition and nutrient cycling in coastal forest ecosystems, Canadian Journal of Forest Research, 16, 983–989.

    Article  Google Scholar 

  • Subler S, Edwards CA & Metzger J, 1998, Comparing vermicomposts and composts. Biocycle, 39, 63–66.

    CAS  Google Scholar 

  • Suthar S, 2006. Potential utilization of guar gum industrial waste in vermicomposting production, Bioresource Technology, 97, 2474–2477.

    CAS  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG & Zuberer DA, 1998, Principles and Applications of Soil Microbiology. Prentice Hall Inc., 408–426.

    Google Scholar 

  • Talashilkar SC, Bhangarath PP & Mehta VP, 1999, Changes in chemical properties during composting of organic residues as influenced by earthworm activity, Journal of Indian Society of Soil Science, 47, 50–53.

    Google Scholar 

  • Tan KA, 1996. Soil Sampling, preparation and Analysis, New York, Marcel Decker Inc

    Google Scholar 

  • Tripathi G & Bhardwaj P, 2004, Comparative studies on biomass production, life cycles and composting efficiency of Eisenia foetida (Savigny) and Lampito mauritii (Kinberg), Bioresource Technology, 92, 275–278.

    Article  CAS  Google Scholar 

  • Venter JM & Reinecke AJ, 1988, The life cycle of the compost worm Eisenia foetida (Oligochaeta). South African Journal of Zoology, 23, 161–165.

    Google Scholar 

  • Viel M Sayag D & Andre L 1987 Optimization of agricultural industrial waste management through in-vessel composting In-de Bertoldi M. (Ed.) Compost: Production Quality and Use. Elsevier Appl. Sci. Essex pp. 230–237

    Google Scholar 

  • Vinceslas-Akpa M & Loquet M, 1997, Organic matter transformations in lignocellulosic waste products composted or vermicomposted (Eisenia fetida andrei): Chemical analysis and C 13 CPMAS NMR spectroscopy, Soil Biology and Biochemistry, 29, 751–758.

    Article  CAS  Google Scholar 

  • Vinotha SP, Parthasarthi K & Ranganathan LS, 2000, Enhanced phosphatase activity in earthworm casts is more of microbial origin, Current Science, 79, 1158–1159.

    CAS  Google Scholar 

  • Wilson DP & Carlile WR, 1989, Plant growth in potting media containing worm worked duck waste. Acta Horticulturae, 238, 205–220.

    Google Scholar 

  • Wright MA, 1972, Factors governing ingestion by the earthworm Lumbricus terrestris (L.), with special reference to apple leaves, Annals of Applied Biology, 70, 175–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vinod Kumar, G., Renuka, G., Anoop, Y. (2008). Potential of Vermicomposting Technology in Solid Waste Management. In: Pandey, A., Soccol, C.R., Larroche, C. (eds) Current Developments in Solid-state Fermentation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75213-6_20

Download citation

Publish with us

Policies and ethics