Skip to main content
Log in

Physiologically Based Pharmacokinetic Modeling of Impaired Carboxylesterase-1 Activity: Effects on Oseltamivir Disposition

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

An Erratum to this article was published on 21 August 2014

Abstract

Background and Objective

Human carboxylesterase-1 (CES1) is an enzyme that is primarily expressed in the liver, where it plays an important role in the metabolism of many commonly used medications. Ethanol (alcohol)-mediated inhibition of CES1 and loss-of-function polymorphisms in the CES1 gene can markedly reduce this enzyme’s function. Such alterations in CES1 activity may have important effects on the disposition of substrate drugs. The aim of this study is to develop a physiologically based pharmacokinetic (PBPK) model to predict changes in CES1 substrate drug exposure in humans with CES1 activity impaired by ethanol or loss-of-function CES1 genetic polymorphisms.

Methods

The antiviral drug oseltamivir, an ethyl ester prodrug that is rapidly converted in vivo to the active metabolite oseltamivir carboxylate (OSC) by CES1 was used as a probe drug for CES1 activity. Oseltamivir PBPK models integrating in vitro and in vivo data were developed and refined. Then the changes in oseltamivir and OSC exposure in humans with CES1 impaired by ethanol or polymorphisms were simulated using a PBPK model incorporating in vitro inhibition and enzyme kinetic data. Model assumptions were verified by comparison of simulations with observed and published data. A sensitivity analysis was performed to gain a mechanistic understanding of the exposure changes of oseltamivir and OSC.

Results

The simulated changes in oseltamivir and OSC exposures in humans with CES1 impaired by ethanol or polymorphism were similar to the observed data. The observed exposures to oseltamivir were increased by 46 and 37 % for the area under the plasma concentration–time curve from time zero to 6 h (AUC6) and from time zero to 24 h (AUC24), respectively, with co-administration of ethanol 0.6 g/kg. In contrast, only a slight change was observed in OSC exposure. The simulated data show the same trend as evidenced by greater change in exposures to oseltamivir (26 and 27 % for AUC6 and AUC24, respectively) than OSC (≤6 %).

Conclusions

The PBPK model of impaired CES1 activity correctly predicts observed human data. This model can be extended to predict the effects of drug interactions and other factors affecting the pharmacokinetics of other CES1 substrate drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Satoh T, Taylor P, Bosron WF, Sanghani SP, Hosokawa M, La Du BN. Current progress on esterases: from molecular structure to function. Drug Metab Dispos. 2002;30(5):488–93.

    Article  CAS  PubMed  Google Scholar 

  2. Laizure SC, Herring VL, Hu Z, Witbrodt K, Parker RB. The role of human carboxylesterases in drug metabolism: have we overlooked their importance? Pharmacotherapy. 2013;33(2):210–22.

    Article  CAS  PubMed  Google Scholar 

  3. Tarkiainen EK, Backman JT, Neuvonen M, Neuvonen PJ, Schwab M, Niemi M. Carboxylesterase 1 polymorphism impairs oseltamivir bioactivation in humans. Clin Pharmacol Ther. 2012;92(1):68–71.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu HJ, Markowitz JS. Activation of the antiviral prodrug oseltamivir is impaired by two newly identified carboxylesterase 1 variants. Drug Metab Dispos. 2009;37(2):264–7.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu HJ, Wang X, Gawronski BE, Brinda BJ, Angiolillo DJ, Markowitz JS. Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation. J Pharmacol Exp Ther. 2013;344(3):665–72.

    Article  CAS  PubMed  Google Scholar 

  6. Holstein A, Beil W, Kovacs P. CYP2C metabolism of oral antidiabetic drugs—impact on pharmacokinetics, drug interactions and pharmacogenetic aspects. Expert Opin Drug Metab Toxicol. 2012;8(12):1549–63.

    Article  CAS  PubMed  Google Scholar 

  7. Huang SM, Temple R, Throckmorton DC, Lesko LJ. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther. 2007;81(2):298–304.

    Article  CAS  PubMed  Google Scholar 

  8. Bourland JA, Martin DK, Mayersohn M. Carboxylesterase-mediated transesterification of meperidine (Demerol) and methylphenidate (Ritalin) in the presence of [2H6]ethanol: preliminary in vitro findings using a rat liver preparation. J Pharm Sci. 1997;86(12):1494–6.

    Article  CAS  PubMed  Google Scholar 

  9. Hu ZY, Laizure SC, Herring VL, Parker RB. Identification of alcohol-dependent clopidogrel metabolites using conventional liquid chromatography/triple quadrupole mass spectrometry. Rapid Commun Mass Spectrom. 2014;28(11):1285–92.

    Article  CAS  PubMed  Google Scholar 

  10. Parker RB, Laizure SC. The effect of ethanol on oral cocaine pharmacokinetics reveals an unrecognized class of ethanol-mediated drug interactions. Drug Metab Dispos. 2010;38(2):317–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Patrick KS, Straughn AB, Minhinnett RR, Yeatts SD, Herrin AE, DeVane CL, et al. Influence of ethanol and gender on methylphenidate pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2007;81(3):346–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther. 2006;319(3):1467–76.

    Article  CAS  PubMed  Google Scholar 

  13. Lewis JP, Horenstein RB, Ryan K, O’Connell JR, Gibson Q, Mitchell BD, et al. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genomics. 2013;23(1):1–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Pare G, Eriksson N, Lehr T, Connolly S, Eikelboom J, Ezekowitz MD, et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation. 2013;127(13):1404–12.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther. 2011;89(2):259–67.

    Article  CAS  PubMed  Google Scholar 

  16. Rostami-Hodjegan A. Physiologically based pharmacokinetics joined with in vitro–in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther. 2012;92(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  17. Hu ZY, Laizure SC, Meibohm B, Herring VL, Parker RB. Simple and sensitive assay for quantification of oseltamivir and its active metabolite oseltamivir carboxylate in human plasma using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry: improved applicability to pharmacokinetic study. J Pharm Biomed Anal. 2013;72:245–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Brennan BJ, Davies B, Cirrincione-Dall G, Morcos PN, Beryozkina A, Chappey C, et al. Safety, tolerability, and pharmacokinetics of intravenous oseltamivir: single- and multiple-dose phase I studies with healthy volunteers. Antimicrob Agents Chemother. 2012;56(9):4729–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. He G, Massarella J, Ward P. Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802. Clin Pharmacokinet. 1999;37(6):471–84.

    Article  CAS  PubMed  Google Scholar 

  20. Wattanagoon Y, Stepniewska K, Lindegardh N, Pukrittayakamee S, Silachamroon U, Piyaphanee W, et al. Pharmacokinetics of high-dose oseltamivir in healthy volunteers. Antimicrob Agents Chemother. 2009;53(3):945–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Zhao Y, Hu ZY. Physiologically based pharmacokinetic modelling and in vivo [I]/K(i) accurately predict P-glycoprotein-mediated drug-drug interactions with dabigatran etexilate. Br J Pharmacol. 2014;171(4):1043–53.

    Article  CAS  PubMed  Google Scholar 

  22. Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 2011;100(12):5324–45.

    Article  CAS  PubMed  Google Scholar 

  23. Thelen K, Coboeken K, Willmann S, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part II: extension to describe performance of solid dosage forms. J Pharm Sci. 2012;101(3):1267–80.

    Article  CAS  PubMed  Google Scholar 

  24. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.

    Article  CAS  PubMed  Google Scholar 

  25. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.

    Article  CAS  PubMed  Google Scholar 

  26. Rodgers T, Rowland M. Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharm Res. 2007;24(5):918–33.

    Article  CAS  PubMed  Google Scholar 

  27. Shi D, Yang J, Yang D, LeCluyse EL, Black C, You L, et al. Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxylesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel. J Pharmacol Exp Ther. 2006;319(3):1477–84.

    Article  CAS  PubMed  Google Scholar 

  28. Imai T. Human carboxylesterase isozymes: catalytic properties and rational drug design. Drug Metab Pharmacokinet. 2006;21(3):173–85.

    Article  CAS  PubMed  Google Scholar 

  29. Punt A, Paini A, Boersma MG, Freidig AP, Delatour T, Scholz G, et al. Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared with male rats. Toxicol Sci. 2009;110(2):255–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Meyer M, Schneckener S, Ludewig B, Kuepfer L, Lippert J. Using expression data for quantification of active processes in physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2012;40(5):892–901.

    Article  CAS  PubMed  Google Scholar 

  31. Cer RZ, Mudunuri U, Stephens R, Lebeda FJ. IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding. Nucleic Acids Res. 2009;37:441–5.

    Article  Google Scholar 

  32. Li L, Zhao Y, Du F, Yang J, Xu F, Niu W, et al. Intestinal absorption and presystemic elimination of various chemical constituents present in GBE50 extract, a standardized extract of Ginkgo biloba leaves. Curr Drug Metab. 2012;13(5):494–509.

    Article  CAS  PubMed  Google Scholar 

  33. Jones AW. Pharmacokinetic and pharmacodynamic interactions between alcohol and other drugs. In: Ashraf M, Lionel R, editors. Handbook of drug interactions: a clinical and forensic guide. 2nd ed. New York: Humana Press; 2012.

    Google Scholar 

  34. Wilkinson PK, Sedman AJ, Sakmar E, Kay DR, Wagner JG. Pharmacokinetics of ethanol after oral administration in the fasting state. J Pharmacokinet Biopharm. 1977;5(3):207–24.

    Article  CAS  PubMed  Google Scholar 

  35. Yanjiao X, Chengliang Z, Xiping L, Tao W, Xiuhua R, Dong L. Evaluation of the inhibitory effects of antihypertensive drugs on human carboxylesterase in vitro. Drug Metab Pharmacokinet. 2013;28(6):468–74.

    Article  PubMed  Google Scholar 

  36. Zhu HJ, Appel DI, Peterson YK, Wang Z, Markowitz JS. Identification of selected therapeutic agents as inhibitors of carboxylesterase 1: potential sources of metabolic drug interactions. Toxicology. 2010;270(2–3):59–65.

    Article  CAS  PubMed  Google Scholar 

  37. Rhoades JA, Peterson YK, Zhu HJ, Appel DI, Peloquin CA, Markowitz JS. Prediction and in vitro evaluation of selected protease inhibitor antiviral drugs as inhibitors of carboxylesterase 1: a potential source of drug–drug interactions. Pharm Res. 2012;29(4):972–82.

    Article  CAS  PubMed  Google Scholar 

  38. Hatfield MJ, Tsurkan LG, Hyatt JL, Edwards CC, Lemoff A, Jeffries C, et al. Modulation of esterified drug metabolism by tanshinones from Salvia miltiorrhiza (“Danshen”). J Nat Prod. 2013;76(1):36–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Tsurkan LG, Hatfield MJ, Edwards CC, Hyatt JL, Potter PM. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors. Chem Biol Interact. 2013;203(1):226–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Dean RA, Christian CD, Sample RH, Bosron WF. Human liver cocaine esterases: ethanol-mediated formation of ethylcocaine. FASEB J. 1991;5(12):2735–9.

    CAS  PubMed  Google Scholar 

  41. Farre M, de la Torre R, Gonzalez ML, Teran MT, Roset PN, Menoyo E, et al. Cocaine and alcohol interactions in humans: neuroendocrine effects and cocaethylene metabolism. J Pharmacol Exp Ther. 1997;283(1):164–76.

    CAS  PubMed  Google Scholar 

  42. Song N, Parker RB, Laizure SC. Cocaethylene formation in rat, dog, and human hepatic microsomes. Life Sci. 1999;64(23):2101–8.

    Article  CAS  PubMed  Google Scholar 

  43. Patrick KS, Straughn AB, Reeves OT 3rd, Bernstein H, Bell GH, Anderson ER, et al. Differential influences of ethanol on early exposure to racemic methylphenidate compared with dexmethylphenidate in humans. Drug Metab Dispos. 2013;41(1):197–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Dutkowski R. Oseltamivir in seasonal influenza: cumulative experience in low- and high-risk patients. J Antimicrob Chemother. 2010;65(Suppl 2):ii11–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Izumi Y, Tokuda K, O’Dell KA, Zorumski CF, Narahashi T. Neuroexcitatory actions of Tamiflu and its carboxylate metabolite. Neurosci Lett. 2007;426(1):54–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Jones M, Hama R, Jefferson T, Doshi P. Neuropsychiatric adverse events and oseltamivir for prophylaxis. Drug Saf. 2012;35(12):1187–8 author reply 8–90.

    PubMed  Google Scholar 

  47. Bahar FG, Ohura K, Ogihara T, Imai T. Species difference of esterase expression and hydrolase activity in plasma. J Pharm Sci. 2012;101(10):3979–88.

    Article  CAS  PubMed  Google Scholar 

  48. Einolf HJ, Chen L, Fahmi OA, Gibson CR, Obach RS, Shebley M, et al. Evaluation of various static and dynamic modeling methods to predict clinical CYP3A induction using in vitro CYP3A4 mRNA induction data. Clin Pharmacol Ther. 2014;95(2):179–88.

    Article  CAS  PubMed  Google Scholar 

  49. Einolf HJ. Comparison of different approaches to predict metabolic drug-drug interactions. Xenobiotica. 2007;37(10–11):1257–94.

    CAS  PubMed  Google Scholar 

  50. Perdaems N, Blasco H, Vinson C, Chenel M, Whalley S, Cazade F, et al. Predictions of metabolic drug-drug interactions using physiologically based modelling: two cytochrome P450 3A4 substrates coadministered with ketoconazole or verapamil. Clin Pharmacokinet. 2010;49(4):239–58.

    Article  CAS  PubMed  Google Scholar 

  51. Vieira ML, Kirby B, Ragueneau-Majlessi I, Galetin A, Chien JY, Einolf HJ, et al. Evaluation of various static in vitro–in vivo extrapolation models for risk assessment of the CYP3A inhibition potential of an investigational drug. Clin Pharmacol Ther. 2014;95(2):189–98.

    Article  CAS  PubMed  Google Scholar 

  52. Parrott N, Davies B, Hoffmann G, Koerner A, Lave T, Prinssen E, et al. Development of a physiologically based model for oseltamivir and simulation of pharmacokinetics in neonates and infants. Clin Pharmacokinet. 2011;50(9):613–23.

    Article  CAS  PubMed  Google Scholar 

  53. Hsu V, de L T Vieria M, Zhao P, Zhang L, Zheng JH, Nordmark A, et al. Towards quantitation of the effects of renal impairment and probenecid inhibition on kidney uptake and efflux transporters, using physiologically based pharmacokinetic modelling and simulations. Clin Pharmacokinet. 2014;53(3):283–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Zhu HJ, Patrick KS, Yuan HJ, Wang JS, Donovan JL, DeVane CL, et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet. 2008;82(6):1241–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Jonsson KA, Jones AW, Bostrom H, Andersson T. Lack of effect of omeprazole, cimetidine, and ranitidine on the pharmacokinetics of ethanol in fasting male volunteers. Eur J Clin Pharmacol. 1992;42(2):209–12.

    Article  CAS  PubMed  Google Scholar 

  56. Jones AW, Hahn RG, Stalberg HP. Distribution of ethanol and water between plasma and whole blood; inter- and intra-individual variations after administration of ethanol by intravenous infusion. Scand J Clin Lab Investig. 1990;50(7):775–80.

    Article  CAS  Google Scholar 

  57. Umulis DM, Gurmen NM, Singh P, Fogler HS. A physiologically based model for ethanol and acetaldehyde metabolism in human beings. Alcohol. 2005;35(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  58. DrugBank database. http://www.drugbank.ca. Accessed 6 Mar 2013.

Download references

Acknowledgments

This study was supported by grant R15GM096074 from the National Institute of General Medical Sciences. Zhe-Yi Hu, Andrea N. Edginton, S. Casey Laizure, and Robert B. Parker have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Parker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, ZY., Edginton, A.N., Laizure, S.C. et al. Physiologically Based Pharmacokinetic Modeling of Impaired Carboxylesterase-1 Activity: Effects on Oseltamivir Disposition. Clin Pharmacokinet 53, 825–836 (2014). https://doi.org/10.1007/s40262-014-0160-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0160-3

Keywords

Navigation