Skip to main content

Advertisement

Log in

A Review: Cereals on Modulating the Microbiota/Metabolome for Metabolic Health

  • Functional Foods (I Rudkowska, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diet can modulate both the composition and functionality of the human gut microbiota. Cereals are rich in specific macro and functional elements that are considered important dietary components for maintaining human health; therefore, it is important to examine precise nutritional mechanism involved in exerting the health benefits via modulating gut microbiota. The purpose of this review is to summarize recent research on how different cereals in the diet can regulate the microbiota for health and disease.

Recent Findings

There is an increased interest in targeting the gut microbiome for the treatment of chronic diseases. Cereals can alter the gut microbiome and may improve energy and glucose homeostasis, interfere with host energy homeostasis, appetite, blood glucose regulation, insulin sensitivity, and regulation of host metabolism. However, more human research is necessary to confirm the beneficial health outcomes of cereals via modulating gut microbiota.

Summary

Cereals play an essential role in shaping the intestinal microbiota that contributes to exerting health effects on various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Candela M, Rampelli S, Turroni S, Severgnini M, Consolandi C, De Bellis G, Masetti R, Ricci G, Pession A, Brigidi P. Unbalance of intestinal microbiota in atopic children. BMC Microbiol. 2012;12:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8.

    Article  CAS  PubMed  Google Scholar 

  3. Jonnalagadda S, Harnack L, Liu RH, McKeown N, Seal C, Liu S, Fahey GC. Putting the whole grain puzzle together: health benefits associated with whole grains-summary of American Society for Nutrition 2010 Satellite Symposium. J Nutr. 2011;141(5):30.

    Article  CAS  Google Scholar 

  4. Saltzman E, Das KS, Lichtenstein AH, Dallal GE, Corrales A, Schaefer EJ, Greenberg AS, Roberts SB. An oat containing hypocaloric diet reduces systolic blood pressure and improves lipid profile beyond effects of weight loss in men and women. J Nutr. 2001;131:465–70.

    Article  Google Scholar 

  5. Whole Grains Council. Whole grain statistics. 2013. http://www.wholegrainscouncil.org/newsroom/whole-grain-statistics. Accessed 02 Mar 2022.

  6. Sosland LJ. Whole wheat flour production tops 20 million cwts: growth rate slows. Mil Bak News. 2011;26(1):29.

    Google Scholar 

  7. Giugliano D, Esposito K. Mediterranean diet and metabolic diseases. Curr Opin Lipidol. 2008;19:63–8.

    Article  CAS  PubMed  Google Scholar 

  8. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cardinelli CS, Sala PC, Alves CC, Torrinhas RS, Waitzberg DL. Influence of intestinal microbiota on body weight gain: a narrative review of the literature. Obes Surg. 2015;25:346–53.

    Article  PubMed  Google Scholar 

  10. •• Pontifex MG, Mushtaq A, Gall GL, Rodriguez-Ramiro I, Blokker BA, Hoogteijling MEM, Ricci M, Pellizzon M, Vauzour D, Müller M. Differential influence of soluble dietary fibers on intestinal and hepatic carbohydrate response. Nutrients. 2021;13:4278. This article highlights the heterogeneity that exists between dietary fibers in the context of carbohydrate uptake and metabolism.

  11. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5:1417–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun Y, O’Riordan MXD. Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Adv Appl Microbiol. 2013;85:93–118.

    Article  PubMed  PubMed Central  Google Scholar 

  14. • Yu G, Ji X, Huang J, Liao A, Pan L, Hou Y, Hui M, Guo W. Immunity improvement and gut microbiota remodeling of mice by wheat germ globulin. World J Microbiol. 2021;37(4):64. This article provides important evidence on how wheat germ proteins improve immunity via modulating gut microbiota.

  15. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–79.

    Article  CAS  PubMed  Google Scholar 

  16. Tuddenham S, Cynthia L. Sears The intestinal microbiome and health. Curr Opin Infect Dis. 2015;28(5):464–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neyrinck AM, Possemiers S, Verstraete W, De Backer F, Cani PD, Delzenne NM. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J Nutr Biochem. 2012;23:51–9.

    Article  CAS  PubMed  Google Scholar 

  18. Gui T, Shimokado A, Sun Y, Akasaka T, Muragaki Y. Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediat Inflamm. 2012;2012:693083.

    Article  CAS  Google Scholar 

  19. Dekker NM. Knights in shining armor: short chain fatty acid producers to prevent atherosclerotic plaques? Circ Res. 2019;124:12–4.

    Article  CAS  Google Scholar 

  20. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.

    Article  CAS  PubMed  Google Scholar 

  21. Surendiran G, Alsaif M, Kapourchali FR, Moghadasian MH. Nutritional constituents and health benefits of wild rice (Zizania spp). Nutr Rev. 2014;72:227–36.

    Article  PubMed  Google Scholar 

  22. Food and Drug Administration. Food Fact Sheet. 2018. https://www.fda.gov/media/115280/download. Accessed 21 Nov 2021.

  23. Marcelino G, Hiane PA, Freitas KC, Santana LF, Pott A, Donadon JR, Guimarães RCA. Effects of olive oil and its minor components on cardiovascular diseases, inflammation, and gut microbiota. Nutrients. 2019;11:1826.

    Article  CAS  PubMed Central  Google Scholar 

  24. Moghadasian MH, Alsaif M, Le K, Gangadaran S, Masisi K, Beta T, Shen GX. Combination effects of wild rice and phytosterols on prevention of atherosclerosis in LDL receptor knockout mice. J Nutr Biochem. 2016;33:128–35.

    Article  CAS  PubMed  Google Scholar 

  25. Surendiran G, Goh CY, Le K, Zhao Z, Askarian F, Othman R, Nicholson T, Moghadasian P, Wang YJ, Aliani M, et al. Wild rice prevents atherogenesis in LDL receptor knock-out mice. Atherosclerosis. 2013;230:284–92.

    Article  CAS  PubMed  Google Scholar 

  26. •• Jayachandran M, Chung SSM, Xu B. A critical review on diet-induced microbiota changes and cardiovascular diseases. Crit Rev Food Sci Nutr. 2019;60:2914–25. This review critically evaluated how diet is involved in the prevention of cardiovascular diseases via modulating gut microbiota.

  27. • Moghadasian MH, Kaur R, Kostal, K, Joshi AA, Molaei M, Le K, Fischer G, Bonomini F, Favero G, Rezzani R, Gregorchuk BSJ, Leung-Shing V, Wuzinski M, Seo AI, Bay DC. Anti-atherosclerotic properties of wild rice in low-density lipoprotein receptor knockout mice: the gut microbiome, cytokines, and metabolomics study. Nutrients. 2019; 11:2894. This article provides valuable information about the role of wild rice in preventing artherosclerosis.

  28. •• Gao H, Song R, Li Y, Zhang W, Wan Z, Wang Y, Zhang H, Han S. Effects of oat fiber intervention on cognitive behavior in LDLR (-/-) mice modeling atherosclerosis by targeting the microbiome-gut-brain axis. J. Agric. Food Chem. 2020;68:14480–91. This article provides important information how oat fiber is involved in preventing atherosclerosis.

  29. • Liu FM, Shan SH, Li HQ, Shi JY, Hao RL, Yang RP, Li ZY. Millet shell polyphenols prevent atherosclerosis by protecting the gut barrier and remodeling the gut microbiota in ApoE(-/-) mice. Food Funct. 2021;12:7298–309. This article provides important information about how cereal polyphenols are involved in protecting the host from arterosclerosis and mechanisms involved in protection.

  30. Townsend MK, Aschard H, De Vivo I, Michels KB, Kraft P. Genomics, telomere length, epigenetics, and metabolomics in the nurses’ health studies. Am J Public Health. 2016;106:1663–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bier A, Braun T, Khasbab R, et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients. 2018;10(9):1154.

    Article  PubMed Central  CAS  Google Scholar 

  32. Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM, Durgan DJ. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2017;49:96–104.

    Article  CAS  PubMed  Google Scholar 

  33. Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF, Hollister EB, Bryan RM. Role of the gut microbiome in obstructive sleep apnea- induced hypertension. Hypertension. 2016;67:469–74.

    Article  CAS  PubMed  Google Scholar 

  34. Toral M, Robles-Vera I, de la Visitacion N, Romero M, Sanchez M, Gomez- Guzman M, Rodriguez-Nogales A, Yang T, Jimenez R, Algieri F, Galvez J, Raizada MK, Duarte J. Role of the immune system in vascular function and blood pressure control induced by faecal microbiota transplantation in rats. Acta Physiol. 2019;227:e13285.

    Article  CAS  Google Scholar 

  35. • Tomsett KI, Barrett HL, Dekker EE, Callaway LK, McIntyre DH, Nitert MD. Dietary fiber intake alters gut microbiota composition but does not improve gut wall barrier function in women with future hypertensive disorders of pregnancy. Nutrients. 2020;12:3862. This original research article provides information about the relationship between dietary fiber intake and gut microbiota composition. Study is conducted using humans.

  36. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.

    Article  CAS  PubMed  Google Scholar 

  37. Jonsson AL, Backhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14:79–87.

    Article  CAS  PubMed  Google Scholar 

  38. Xue Y, Cui L, Qi J, Ojo O, Du X, Liu Y, Wang X. The effect of dietary fiber (oat bran) supplement on blood pressure in patients with essential hypertension: a randomized controlled trial. Nutr Metab Cardiovasc Dis. 2021;31:2458–70.

    Article  CAS  PubMed  Google Scholar 

  39. •• Guo H, Hao Y, Fan X, Richel A, Everaert N, Yang X, Ren G. Administration with quinoa protein reduces the blood pressure in spontaneously hypertensive rats and modifies the fecal microbiota. Nutrients. 2021;13:2446. This article provides information about how proteins in pseudocereals are involved in regulating blood pressure via modulating gut microbiota.

  40. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3:289–306.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010;5:e9085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, Dumas M, Rizkalla S, Doré J, Cani P, Clément K. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–36.

    Article  CAS  PubMed  Google Scholar 

  43. Karlsson F, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen DJ, Bäckhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.

    Article  CAS  PubMed  Google Scholar 

  44. Riley LW, Raphael E, Faerstein E. Obesity in the United States - dysbiosis from exposure to low-dose antibiotics? Front Public Health. 2013;1:69.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Diamant M, Blaak EE, de Vos WM. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev. 2011;12:272–81.

    Article  CAS  PubMed  Google Scholar 

  46. Ashley D, Marasini D, Brownmiller C, Lee JA, Carbonero F, Lee SO. Impact of grain sorghum polyphenols on microbiota of normal weight and overweight/obese subjects during in vitro fecal fermentation. Nutrients. 2019;11:217.

    Article  CAS  PubMed Central  Google Scholar 

  47. •• Van Hul M, Karnik K, Canene-Adams K, De Souza M, Van den Abbeele P, Marzorati M, Delzenne NM, Everard A, Cani PD. Comparison of the effects of soluble corn fiber and fructooligosaccharides on metabolism, inflammation, and gut microbiome of high-fat diet-fed mice. Am J Physiol Endocrinol Metab. 2020;319:779–91. This article provides information about the importance of soluble corn fiber and fructooligosaccharide supplementation for maintaning gut health.

  48. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kondo S, Xiao JZ, Satoh T, Odamaki T, Takahashi S, Sugahara H, Yaeshima T, Iwatsuki K, Kamei A, Abe K. Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem. 2010;74:1656–61.

    Article  CAS  PubMed  Google Scholar 

  50. Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F, Cani PD, Larondelle Y, Delzenne NM. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE. 2011;6:e20944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Neyrinck AM, De Backer F, Cani PD, Bindels LB, Stroobants A, Portetelle D, Delzenne NM. Immunomodulatory properties of two wheat bran fractions-aleurone-enriched and crude fractions-in obese mice fed a high fat diet. Int Immunopharmacol. 2008;8:1423–32.

    Article  CAS  PubMed  Google Scholar 

  52. Goldsmith F, Guice J, Page R, Welsh DA, Taylor CM, Blanchard EE, Luo M, Raggio AM, Stout RW, Carvajal-Aldaz D, Gaither A, Pelkman C, Ye J, Martin RJ, Geaghan J, Durham HA, Coulon D, Keenan MJ. Obese ZDF rats fermented resistant starch with effects on gut microbiota but no reduction in abdominal fat. Mol Nutr Food Res. 2017;61:1501025.

    Article  CAS  Google Scholar 

  53. Zhang L, Ouyang Y, Li H, Shen L, Ni Y, Fang Q, Wu G, Qian L, Xiao Y, Zhang J, Yin P, Panagiotou G, Xu G, Ye J, Jia W. Metabolic phenotypes and the gut microbiota in response to dietary resistant starch type 2 in normal-weight subjects: a randomized crossover trial. Sci Rep. 2019;9:4736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE, Louis P, Flint HJ, de Vos WM. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8:2218–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016;4:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sarma SM, Khare P, Jagtap S, Singh DP, Baboota RK, Podili K, Boparai RK, Kaur J, Bhutani KK, Bishnoi M, et al. Kodo millet whole grain and bran supplementation prevents high-fat diet induced derangements in a lipid profile, inflammatory status and gut bacteria in mice. Food Funct. 2017;8:1174–83.

    Article  CAS  PubMed  Google Scholar 

  57. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010;5:e9085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. •• Ren X, Wang LX, Chen ZL, Hou DAZ, Xue Y, Diao XM, Shen Q. Foxtail millet improves blood glucose metabolism in diabetic rats through PI3K/AKT and NF-kappa B signaling pathways mediated by gut microbiota. Nutrients. 2021; 13:1837. This article provides valuable scientific evidence on improving blood glucose metabolism by foxtail millet in an animal model study.

  59. Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, McCabe GP, Weaver CM. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. J Nutr. 2016;146:1298–306.

    Article  CAS  PubMed  Google Scholar 

  60. Costabile A, Bergillos-Meca T, Rasinkangas P, Korpela K, de Vos WM, Gibson GR. Effects of soluble corn fiber alone or in synbiotic combination with lactobacillus rhamnosus gg and the pilus-deficient derivative GG-PB12 on fecal microbiota, metabolism, and markers of immune function: a randomized, double-blind, placebo-controlled, crossover study in healthy elderly (saimes study). Front Immunol. 2017;8:1443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. •• Hughes RL, Horn WH, Finnegan P, Newman JW, Marco ML, Keim NL, et al. Resistant starch type 2 from wheat reduces postprandial glycemic response with concurrent alterations in gut microbiota composition. Nutrients. 2021;13:645. This article provides important information about the role resistant starch II from wheat on regulating postprandial glycemic response.

  63. Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lei S, Ramesh A, Twitchell E, Wen K, Bui T, Weiss M, Yang X, Kocher J, Li G, Giri-Rachman E, Trang NV, Jiang X, Ryan EP, Yuan L. High protective efficacy of probiotics and rice bran against human norovirus infection and diarrhea in gnotobiotic pigs. Front Microbiol. 2016;7:1699.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sheflin AM, Borresen EC, Kirkwood JS, Boot CM, Whitney AK, Lu S, Brown RJ, Broeckling CD, Ryan EP, Weir TL. Dietary supplementation with rice bran or navy bean alters gut bacterial metabolism in colorectal cancer survivors. Mol Nutr Food Res. 2017;61:1500905.

    Article  CAS  Google Scholar 

  66. Yang X, Twitchell E, Li G, Wen K, Weiss M, Kocher J, Lei S, Ramesh A, Ryan EP, Yuan L. High protective efficacy of rice bran against human rotavirus diarrhea via enhancing probiotic growth, gut barrier function, and innate immunity. Sci Rep. 2015;5:15004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zarei I, Brown DG, Nealon NJ, Ryan EP. Rice bran metabolome contains amino acids, vitamins & cofactors, and phytochemicals with medicinal and nutritional properties. Rice. 2017;10:24.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tuncil YE, Thakkar RD, Arioglu-Tuncil S, Hamaker BR, Lindemann SR. Fecal microbiota responses to bran particles are specific to cereal type and in vitro digestion methods that mimic upper gastrointestinal tract passage. J Agric Food Chem. 2018;66:12580–93.

    Article  CAS  PubMed  Google Scholar 

  69. Brown DG, Borresen EC, Brown RJ, Ryan EP. Heat-stabilized rice bran consumption by colorectal cancer survivors modulates stool metabolite profiles and metabolic networks: a randomized controlled trial. Br J Nutr. 2017;117:1244–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Si X, Shang W, Zhou Z, Shui G, Lam SM, Blanchard C, Strappe P. Gamma-aminobutyric acid enriched rice bran diet attenuates insulin resistance and balances energy expenditure via modification of gut microbiota and short-chain fatty acids. J Agric Food Chem. 2018;66:881–90.

    Article  CAS  PubMed  Google Scholar 

  71. Fabian C, Ju YH. A review on rice bran protein: its properties and extraction methods. Crit Rev Food Sci Nutr. 2011;51:816–27.

    Article  CAS  PubMed  Google Scholar 

  72. Law BMH, Waye MMY, So WKW, Chair SY. Hypotheses on the potential of rice bran intake to prevent gastrointestinal cancer through the modulation of oxidative stress. Nutrients. 2017;18:569. https://doi.org/10.3390/nu8090569.

    Article  CAS  Google Scholar 

  73. Sohail M, Rakha A, Butt MS, Iqbal MJ, Rashid S. Rice bran nutraceutics: a comprehensive review. Crit Rev Food Sci Nutr. 2017;57:3771–80.

    Article  CAS  PubMed  Google Scholar 

  74. •• Wan J, Wu Y, Pham Q, Li RW, Yu L, Chen MH, Boue SM, Yokoyama W, Li B, Wang TTY. Effects of differences in resistant starch content of rice on intestinal microbial composition. J Agric Food Chem. 2021;69:8017–27. Resistant starches are part of dietary fiber; this article provide valuable information about how resistant starch content in rice plays a role in modulating gut microbiota.

  75. Ghimire S, Wongkuna S, Sankaranarayanan R, et al. Rice bran and quercetin produce a positive synergistic effect on human gut microbiota, elevate the level of propionate, and reduce the population of Enterobacteriaceae family when determined using a bioreactor model. bioRxiv; 2020. (epublication 14 Feb 2020).

  76. Wang X, Kolba N, Liang J, Tako E. Alterations in gut microflora populations and brush border functionality following intra-amniotic administration (Gallus gallus) of wheat bran prebiotic extracts. Food Funct. 2019;10:4834–43.

    Article  CAS  PubMed  Google Scholar 

  77. Han S, Jiao J, Zhang W, Xu J, Wan Z, Zhang W, Gao X, Qin L. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet. Sci Rep. 2015;5:15256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Neyrinck AM, Van Hee VF, Piront N, De Backer F, Toussaint O, Cani PD, Delzenne NM. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabetes. 2012;2:e28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu W, Zhang Y, Qiu B, Fan SJ, Ding HF, Liu ZH. Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran sulfate sodium in C57BL/6 mice. Sci Rep. 2018;8:14916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Vanegas SM, Meydani M, Barnett JB, Goldin B, Kane A, Rasmussen H, Brown C, Vangay P, Knights D, Jonnalagadda S, Koecher K, Karl JP, Thomas M, Dolnikowski G, Li L, Saltzman E, Wu D, Meydani SN. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr. 2017;105:635–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. • Ji Y, Ma N, Zhang J, Wang H, Tao T, Pei F, Hu Q. Dietary intake of mixture coarse cereals prevents obesity by altering the gut microbiota in high-fat diet fed mice. Food Chem Toxiocol. 2021;147:111901. This research article provides information on how dietary intake of mixture of different coarse cereals including millet, maize, oat, soybean, and purple potato could prevent obesity via modulating gut microbiota.

  82. •• Duan R, Guan X, Huang K, Zhang Y, Li S, Xia J, Shen M. Flavonoids from wholegrain oat alleviated high-fat diet-induced hyperlipidemia via regulating bile acid metabolism and gut microbiota in mice. J Agric Food Chem. 2021;69(27):7629–40. This article highlights the importance of oat flavonoids on regulating hyperlipidemia through altering gut microbiota.

  83. Ryan PM, London LEE, Bjorndahl TC, Mandal R, Murphy K, Fitzgerald GF, Shanahan F, Ross RP, Wishart DS, Caplice NM. Microbiome and metabolome modifying effects of several cardiovascular disease interventions in apo-E-/- mice. Microbiome. 2017;5:30.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Suriano F, Bindels LB, Verspreet J, Courtin CM, Verbeke K, Cani PD, Neyrinck AM, Delzenne NM. Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity. Sci Rep. 2017;7:5621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. • Trijp MPVH, Schutte S, Esser D, Wopereis S, Hoevenaars FPM, Hooiveld GJEJ, Afman LA, Minor changes in the composition and function of the gut microbiota during a 12-week whole grain wheat or refined wheat intervention correlate with liver fat in overweight and obese adults. J Nutr. 2021;151(3):491–502. This article provides information about the importance of wholegrain consumption in modulating gut microbiota to prevent liver disease in overweight or obese people.

  86. Cosola C, De Angelis M, Rocchetti MT, Montemurno E, Maranzano V, Dalfino G. beta-Glucans supplementation associates with reduction in P-cresyl sulfate levels and improved endothelial vascular reactivity in healthy individuals. PLoS ONE. 2017;12(1):e0169635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. He B, Bai Y, Jiang L, Wang W, Li T, Liu P, Tao S, Zhao J, Han D, Wang J. Effects of oat bran on nutrient digestibility, intestinal microbiota, and inflammatory responses in the hindgut of growing pigs. Int J Mol Sci. 2018;19:2407.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senay Simsek.

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Functional Foods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulathunga, J., Simsek, S. A Review: Cereals on Modulating the Microbiota/Metabolome for Metabolic Health. Curr Nutr Rep 11, 371–385 (2022). https://doi.org/10.1007/s13668-022-00424-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-022-00424-1

Keywords

Navigation