Skip to main content

Advertisement

Log in

Effects of Non-nutritive Sweeteners on Sweet Taste Processing and Neuroendocrine Regulation of Eating Behavior

  • Nutrition and the Brain (J Nasser, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Non-nutritive sweeteners (NNS) are increasingly used as a replacement for nutritive sugars as means to quench the desire for “sweets” while contributing few or no dietary calories. However, there is concern that NNS may uncouple the evolved relationship between sweet taste and post-ingestive neuroendocrine signaling. In this review, we examine the effects of NNS exposure on neural and peripheral systems in humans.

Recent Findings

NNS exposure during early development may influence sweet taste preferences, and NNS consumption might increase motivation for sweet foods. Neuroimaging studies provide evidence that NNS elicit differential neuronal responsivity in areas related to reward and satiation, compared with caloric sweeteners. Findings are heterogenous regarding whether NNS affect physiological responses.

Summary

Additional studies are warranted regarding the consequences of NNS on metabolic outcomes and neuroendocrine pathways. Given the widespread popularity of NNS, future studies are essential to establish their role in long-term health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol Behav. 2010;100:47–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol. 2013;9:13–27.

    PubMed  Google Scholar 

  3. Bray GA, Popkin BM. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes?: health be damned! Pour on the sugar. Diabetes Care. 2014;37:950–6.

    CAS  PubMed  Google Scholar 

  4. Sylvetsky AC, Jin Y, Clark EJ, Welsh JA, Rother KI, Talegawkar SA. Consumption of low-calorie sweeteners among children and adults in the United States. J Acad Nutr Diet. 2017;117:441–448.e2.

    PubMed  PubMed Central  Google Scholar 

  5. Sylvetsky AC, Greenberg M, Zhao X, Rother KI. What parents think about giving nonnutritive sweeteners to their children: a pilot study. Int J Pediatr. 2014;2014:1–5. https://doi.org/10.1155/2014/819872.

    Article  Google Scholar 

  6. Sylvetsky AC, Walter PJ, Garraffo HM, Robien K, Rother KI. Widespread sucralose exposure in a randomized clinical trial in healthy young adults. Am J Clin Nutr. 2017;105:820–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth : United States, 2015–2016. 2017.

  8. Xu G, Liu B, Sun Y, Du Y, Snetselaar LG, Hu FB, et al. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study. BMJ. 2018;362:k1497.

    PubMed  PubMed Central  Google Scholar 

  9. Johnson RK, Lichtenstein AH, Anderson CAM, Carson JA, Després J-P, Hu FB, et al. Low-calorie sweetened beverages and cardiometabolic health: a science advisory from the American Heart Association. Circulation. 2018;138:e126–40. https://doi.org/10.1161/CIR.0000000000000569.

    Article  PubMed  Google Scholar 

  10. Pepino MY. Metabolic effects of non-nutritive sweeteners. Physiol Behav. 2015;152:450–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. • Azad MB, Sharma AK, de Souza RJ, et al. Association between artificially sweetened beverage consumption during pregnancy and infant body mass index. JAMA Pediatr. 2016;170:662–70. This epidemiological study showed that daily consumption of NNS was associated with a 0.2 unit increase in infant BMI z-score as well as a greater risk for being overweight at 1 year of age.

    PubMed  Google Scholar 

  12. Murray S, Tulloch A, Criscitelli K, Avena NM. Recent studies of the effects of sugars on brain systems involved in energy balance and reward: relevance to low calorie sweeteners. Physiol Behav. 2016;164:504–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu Y, Olsen SF, Mendola P, Halldorsson TI, Rawal S, Hinkle SN, et al. Maternal consumption of artificially sweetened beverages during pregnancy, and offspring growth through 7 years of age: a prospective cohort study. Int J Epidemiol. 2017;46:1499–508.

    PubMed  PubMed Central  Google Scholar 

  14. The InterAct consortium. Consumption of sweet beverages and type 2 diabetes incidence in European adults: results from EPIC-InterAct. Diabetologia. 2013;56:1520–30.

    Google Scholar 

  15. Maersk M, Belza A, Holst JJ, Fenger-Grøn M, Pedersen SB, Astrup A, et al. Satiety scores and satiety hormone response after sucrose-sweetened soft drink compared with isocaloric semi-skimmed milk and with non-caloric soft drink: a controlled trial. Eur J Clin Nutr. 2012;66:523–9.

    CAS  PubMed  Google Scholar 

  16. Peters JC, Wyatt HR, Foster GD, Pan Z, Wojtanowski AC, Vander Veur SS, et al. The effects of water and non-nutritive sweetened beverages on weight loss during a 12-week weight loss treatment program. Obesity (Silver Spring). 2014;22:1415–21.

    Google Scholar 

  17. Peters JC, Beck J. Low calorie sweetener (LCS) use and energy balance. Physiol Behav. 2016;164:524–8.

    CAS  PubMed  Google Scholar 

  18. • Higgins KA, Mattes RD. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am J Clin Nutr. 2019;109:1288–301. This study compared the effects of 4 different NNS directly, and the authors found that a 12-week exposure to aspartame, sucralose, saccharin, or stevia had no effect on peripheral insulin. Interestingly, while saccharin consumption increased body weight, participants who consumed sucralose experienced a (non-significant) directionally negative change in weight.

    PubMed  Google Scholar 

  19. Tey SL, Salleh NB, Henry CJ, Forde CG. Effects of non-nutritive (artificial vs natural) sweeteners on 24-h glucose profiles. Eur J Clin Nutr. 2017;71:1129–32.

    CAS  PubMed  Google Scholar 

  20. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KSH, Ilegems E, Daly K, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+−glucose cotransporter 1. Proc Natl Acad Sci U S A. 2007;104:15075–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Veldhuizen MG, Babbs RK, Patel B, Fobbs W, Kroemer NB, Garcia E, et al. Integration of sweet taste and metabolism determines carbohydrate reward. Curr Biol. 2017;27:2476–2485.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lanfer A, Knof K, Barba G, Veidebaum T, Papoutsou S, de Henauw S, et al. Taste preferences in association with dietary habits and weight status in European children: results from the IDEFICS study. Int J Obes. 2012;36:27–34.

    CAS  Google Scholar 

  23. Salbe AD, DelParigi A, Pratley RE, Drewnowski A, Tataranni PA. Taste preferences and body weight changes in an obesity-prone population. Am J Clin Nutr. 2004;79:372–8.

    CAS  PubMed  Google Scholar 

  24. Matsushita Y, Mizoue T, Takahashi Y, Isogawa A, Kato M, Inoue M, et al. Taste preferences and body weight change in Japanese adults: the JPHC study. Int J Obes. 2009;33:1191–7.

    CAS  Google Scholar 

  25. Mennella JA, Jagnow CP, Beauchamp GK. Prenatal and postnatal flavor learning by human infants. Pediatrics. 2001;107:E88.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mennella JA, Castor SM. Sensitive period in flavor learning: effects of duration of exposure to formula flavors on food likes during infancy. Clin Nutr. 2012;31:1022–5.

    PubMed  PubMed Central  Google Scholar 

  27. Frihauf JB, Fekete ÉM, Nagy TR, Levin BE, Zorrilla EP. Maternal Western diet increases adiposity even in male offspring of obesity-resistant rat dams: early endocrine risk markers. Am J Phys Regul Integr Comp Phys. 2016;311:R1045–59.

    Google Scholar 

  28. Rosales-Gómez CA, Martínez-Carrillo BE, Reséndiz-Albor AA, Ramírez-Durán N, Valdés-Ramos R, Mondragón-Velásquez T, et al. Chronic consumption of sweeteners and its effect on glycaemia, cytokines, hormones, and lymphocytes of GALT in CD1 mice. Biomed Res Int. 2018;2018:1–15.

    Google Scholar 

  29. Zhang G-H, Chen M-L, Liu S-S, Zhan Y-H, Quan Y, Qin Y-M, et al. Effects of mother’s dietary exposure to acesulfame-K in pregnancy or lactation on the adult offspring’s sweet preference. Chem Senses. 2011;36:763–70.

    CAS  PubMed  Google Scholar 

  30. Chen M-L, Liu S-S, Zhang G-H, Quan Y, Zhan Y-H, Gu T-Y, et al. Effects of early intraoral acesulfame-K stimulation to mice on the adult’s sweet preference and the expression of α-gustducin in fungiform papilla. Chem Senses. 2013;38:447–55.

    CAS  PubMed  Google Scholar 

  31. Zhang G-H, Chen M-L, Liu S-S, Zhan Y-H, Quan Y, Qin Y-M, et al. Facilitation of the development of fungiform taste buds by early intraoral acesulfame-K stimulation to mice. J Neural Transm. 2010;117:1261–4.

    PubMed  Google Scholar 

  32. Sylvetsky AC, Gardner AL, Bauman V, Blau JE, Garraffo HM, Walter PJ, et al. Nonnutritive sweeteners in breast Milk. J Toxicol Environ Health Part A. 2015;78:1029–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. • Sylvetsky AC, Conway EM, Malhotra S, Rother KI. Development of sweet taste perception: implications for artificial sweetener use. Endocr Dev. 2017;32:87–99. An informative recent review regarding the potential effects of NNS exposure on taste perception and preferences throughout fetal development, childhood, and adolescence.

    PubMed  Google Scholar 

  34. Seferidi P, Millett C, Laverty AA. Sweetened beverage intake in association to energy and sugar consumption and cardiometabolic markers in children. Pediatr Obes. 2018;13:195–203.

    CAS  PubMed  Google Scholar 

  35. •• Sylvetsky AC, Figueroa J, Zimmerman T, Swithers SE, Welsh JA. Consumption of low-calorie sweetened beverages is associated with higher total energy and sugar intake among children, NHANES 2011–2016. Pediatr Obes. 2019;14:e12535. This recent large observational study using NHANES data found associations in children and adolescents between habitual NNS consumption and higher dietary energy, carbohydrate, total sugar, and added sugar intake.

    PubMed  Google Scholar 

  36. Sylvetsky AC, Jin Y, Mathieu K, DiPietro L, Rother KI, Talegawkar SA. Low-calorie sweeteners: disturbing the energy balance equation in adolescents? Obesity (Silver Spring). 2017;25:2049–54.

    CAS  Google Scholar 

  37. Swithers SE. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol Metab. 2013;24:431–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Swithers SE. Artificial sweeteners are not the answer to childhood obesity. Appetite. 2015;93:85–90.

    PubMed  Google Scholar 

  39. Wang Q-P, Lin YQ, Zhang L, Wilson YA, Oyston LJ, Cotterell J, et al. Sucralose promotes food intake through NPY and a neuronal fasting response. Cell Metab. 2016;24:75–90.

    CAS  PubMed  Google Scholar 

  40. Musso P-Y, Lampin-Saint-Amaux A, Tchenio P, Preat T. Ingestion of artificial sweeteners leads to caloric frustration memory in drosophila. Nat Commun. 2017;8:1803.

    PubMed  PubMed Central  Google Scholar 

  41. Davidson TL, Martin AA, Clark K, Swithers SE. Intake of high-intensity sweeteners alters the ability of sweet taste to signal caloric consequences: implications for the learned control of energy and body weight regulation. Q J Exp Psychol. 2011;64:1430–41.

    Google Scholar 

  42. • Casperson SL, Johnson L, Roemmich JN. The relative reinforcing value of sweet versus savory snack foods after consumption of sugar- or non-nutritive sweetened beverages. Appetite. 2017;112:143–9. This study utilized experimental design to determine how the acute ingestion of a NNS beverage, relative to a sugar-sweetened drink, influenced eating behavior after a standardized meal, among healthy adults. The authors found that the NNS drink, but not the sugar-sweetened beverage, increased the reinforcing value of sweet snack foods.

    PubMed  Google Scholar 

  43. Fantino M, Fantino A, Matray M, Mistretta F. Beverages containing low energy sweeteners do not differ from water in their effects on appetite, energy intake and food choices in healthy, non-obese French adults. Appetite. 2018;125:557–65.

    PubMed  Google Scholar 

  44. Hill SE, Prokosch ML, Morin A, Rodeheffer CD. The effect of non-caloric sweeteners on cognition, choice, and post-consumption satisfaction. Appetite. 2014;83:82–8.

    PubMed  Google Scholar 

  45. Farkas A, Híd J. The black agonist-receptor model of high potency sweeteners, and its implication to sweetness taste and sweetener design. J Food Sci. 2011;76:S465–8.

    CAS  PubMed  Google Scholar 

  46. Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci U S A. 2004;101:14258–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nie Y, Vigues S, Hobbs JR, Conn GL, Munger SD. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Curr Biol. 2005;15:1948–52.

    CAS  PubMed  Google Scholar 

  48. Jang H-J, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A. 2007;104:15069–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, et al. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One. 2009;4:e5106.

    PubMed  PubMed Central  Google Scholar 

  50. Ohtsu Y, Nakagawa Y, Nagasawa M, Takeda S, Arakawa H, Kojima I. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells. Mol Cell Endocrinol. 2014;394:70–9.

    CAS  PubMed  Google Scholar 

  51. Kojima I, Nakagawa Y, Hamano K, Medina J, Li L, Nagasawa M. Glucose-sensing receptor T1R3: a new signaling receptor activated by glucose in pancreatic β-cells. Biol Pharm Bull. 2015;38:674–9.

    CAS  PubMed  Google Scholar 

  52. Li L, Ohtsu Y, Nakagawa Y, Masuda K, Kojima I. Sucralose, an activator of the glucose-sensing receptor, increases ATP by calcium-dependent and -independent mechanisms. Endocr J. 2016;63:715–25.

    CAS  PubMed  Google Scholar 

  53. Fowler SPG. Low-calorie sweetener use and energy balance: results from experimental studies in animals, and large-scale prospective studies in humans. Physiol Behav. 2016;164:517–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Brown RJ, Walter M, Rother KI. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Diabetes Care. 2009;32:2184–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Brown RJ, Walter M, Rother KI. Effects of diet soda on gut hormones in youths with diabetes. Diabetes Care. 2012;35:959–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. • Sylvetsky AC, Brown RJ, Blau JE, Walter M, Rother KI. Hormonal responses to non-nutritive sweeteners in water and diet soda. Nutr Metab (Lond). 2016;13:71. This study showed that diet soda, relative to a NNS dissolved in water, increased GLP-1 release.

    Google Scholar 

  57. Temizkan S, Deyneli O, Yasar M, Arpa M, Gunes M, Yazici D, et al. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin Nutr. 2015;69:162–6.

    CAS  PubMed  Google Scholar 

  58. Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein S. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care 2013; DC_122221.

  59. Wu T, Bound MJ, Standfield SD, Bellon M, Young RL, Jones KL, et al. Artificial sweeteners have no effect on gastric emptying, glucagon-like peptide-1, or glycemia after oral glucose in healthy humans. Diabetes Care. 2013;36:e202–3.

    PubMed  PubMed Central  Google Scholar 

  60. Wu T, Zhao BR, Bound MJ, Checklin HL, Bellon M, Little TJ, et al. Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans. Am J Clin Nutr. 2012;95:78–83.

    CAS  PubMed  Google Scholar 

  61. Ma J, Bellon M, Wishart JM, Young R, Blackshaw LA, Jones KL, et al. Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am J Physiol Gastrointest Liver Physiol. 2009;296:G735–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma J, Chang J, Checklin HL, Young RL, Jones KL, Horowitz M, et al. Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects. Br J Nutr. 2010;104:803–6.

    CAS  PubMed  Google Scholar 

  63. Steinert RE, Frey F, Toepfer A, Drewe J, Beglinger C. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br J Nutr. 2011;24:1–9.

    Google Scholar 

  64. Ford HE, Peters V, Martin NM, Sleeth ML, Ghatei MA, Frost GS, et al. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur J Clin Nutr. 2011;65:508–13.

    CAS  PubMed  Google Scholar 

  65. • Tey SL, Salleh NB, Henry J, Forde CG. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obes. 2017;41:450–7. This study showed that two different types of NNS (stevia and monk fruit) both have an effect on post-prandial insulin release in combination with a meal.

    CAS  Google Scholar 

  66. •• Nichol AD, Salame C, Rother KI, Pepino MY. Effects of sucralose ingestion versus sucralose taste on metabolic responses to an oral glucose tolerance test in participants with normal weight and obesity: a randomized crossover trial. Nutrients. 2019. https://doi.org/10.3390/nu12010029. This study demonstrated that sucralose decreased plasma insulin concentrations in lean participants, but increased insulin concentrations among obese participants, when tasted or ingested. These findings suggest that sucralose may have differential peripheral effects depending on body weight and metabolic health.

  67. Sakurai K, Lee EY, Morita A, Kimura S, Kawamura H, Kasamatsu A, et al. Glucagon-like peptide-1 secretion by direct stimulation of L cells with luminal sugar vs non-nutritive sweetener. J Diabetes Invest. 2012;3:156–63.

    CAS  Google Scholar 

  68. Brown AW, Bohan Brown MM, Onken KL, Beitz DC. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women. Nutr Res. 2011;31:882–8.

    CAS  PubMed  Google Scholar 

  69. Lertrit A, Srimachai S, Saetung S, Chanprasertyothin S, Chailurkit L, Areevut C, et al. Effects of sucralose on insulin and glucagon-like peptide-1 secretion in healthy subjects: a randomized, double-blind, placebo-controlled trial. Nutrition. 2018;55–56:125–30.

    PubMed  Google Scholar 

  70. Romo-Romo A, Aguilar-Salinas CA, Brito-Córdova GX, Gómez-Díaz RA, Almeda-Valdes P. Sucralose decreases insulin sensitivity in healthy subjects: a randomized controlled trial. Am J Clin Nutr. 2018;108:485–91.

    PubMed  Google Scholar 

  71. • Ahmad SY, Friel JK, MacKay DS. The effect of the artificial sweeteners on glucose metabolism in healthy adults: a randomized double-blinded crossover clinical trial. Appl Physiol Nutr Metab. 2019. https://doi.org/10.1139/apnm-2019-0359. This study found no change in peripheral insulin, GLP-1, or leptin levels or insulin sensitivity in healthy, lean participants exposed for 12 weeks to aspartame or sucralose mixed in water.

  72. Bonnet F, Tavenard A, Esvan M, Laviolle B, Viltard M, Lepicard EM, et al. Consumption of a carbonated beverage with high-intensity sweeteners has no effect on insulin sensitivity and secretion in nondiabetic adults. J Nutr. 2018;148:1293–9.

    PubMed  Google Scholar 

  73. Higgins KA, Considine RV, Mattes RD. Aspartame consumption for 12 weeks does not affect glycemia, appetite, or body weight of healthy, lean adults in a randomized controlled trial. J Nutr. 2018;148:650–7.

    PubMed  Google Scholar 

  74. Grotz VL, Henry RR, McGill JB, Prince MJ, Shamoon H, Trout JR, et al. Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. J Am Diet Assoc. 2003;103:1607–12.

    PubMed  Google Scholar 

  75. Grotz VL, Pi-Sunyer X, Porte D, Roberts A, Richard Trout J. A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regul Toxicol Pharmacol. 2017;88:22–33.

    CAS  PubMed  Google Scholar 

  76. Collison KS, Makhoul NJ, Zaidi MZ, Al-Rabiah R, Inglis A, Andres BL, et al. Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis. Nutr Metab (Lond). 2012;9:58.

    CAS  Google Scholar 

  77. Collison KS, Inglis A, Shibin S, Andres B, Ubungen R, Thiam J, et al. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior. Physiol Behav. 2016;167:209–21.

    CAS  PubMed  Google Scholar 

  78. Frank GKW, Oberndorfer TA, Simmons AN, Paulus MP, Fudge JL, Yang TT, et al. Sucrose activates human taste pathways differently from artificial sweetener. NeuroImage. 2008;39:1559–69.

    PubMed  Google Scholar 

  79. Smeets PAM, Weijzen P, de Graaf C, Viergever MA. Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. NeuroImage. 2011;54:1367–74.

    PubMed  Google Scholar 

  80. Smeets PAM, de Graaf C, Stafleu A, van Osch MJP, van der Grond J. Functional MRI of human hypothalamic responses following glucose ingestion. NeuroImage. 2005;24:363–8.

    PubMed  Google Scholar 

  81. Page KA, Chan O, Arora J, Belfort-DeAguiar R, Dzuira J, Roehmholdt B, et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA. 2013;309:63–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Luo S, Melrose AJ, Dorton H, Alves J, Monterosso JR, Page KA. Resting state hypothalamic response to glucose predicts glucose-induced attenuation in the ventral striatal response to food cues. Appetite. 2017;116:464–70.

    PubMed  PubMed Central  Google Scholar 

  83. Matsuda M, Liu Y, Mahankali S, Pu Y, Mahankali A, Wang J, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48:1801–6.

    CAS  PubMed  Google Scholar 

  84. Jastreboff AM, Sinha R, Arora J, Giannini C, Kubat J, Malik S, et al. Altered brain response to drinking glucose and fructose in obese adolescents. Diabetes. 2016;65:1929–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Page KA, Luo S, Wang X, Chow T, Alves J, Buchanan TA, et al. Children exposed to maternal obesity or gestational diabetes during early fetal development have hypothalamic alterations that predict future weight gain. Diabetes Care. 2019;42:1473–80. https://doi.org/10.2337/dc18-2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smeets PAM, de Graaf C, Stafleu A, van Osch MJP, van der Grond J. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr. 2005;82:1011–6.

    CAS  PubMed  Google Scholar 

  87. van Opstal AM, Kaal I, van den Berg-Huysmans AA, Hoeksma M, Blonk C, Pijl H, et al. Dietary sugars and non-caloric sweeteners elicit different homeostatic and hedonic responses in the brain. Nutrition. 2019;60:80–6.

    PubMed  Google Scholar 

  88. •• van Opstal AM, Hafkemeijer A, van den Berg-Huysmans AA, Hoeksma M, Mulder TPJ, Pijl H, et al. Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements and artificial sweeteners. Nutr Neurosci. 2019; This recent fMRI study expands upon prior work demonstrating that NNS may not have a similar satiating effect on the brain as nutritive sweeteners. In this study, healthy adults are given fat/protein milkshakes sweetened with either glucose, fructose, allulose, or sucralose. Unlike glucose, sucralose had no effect on BOLD signaling, which supports the hypothesis that sweet taste absent of nutritive carbohydrates, even in the presence of fat/protein, may not lead to hypothalamic connectivity changes generally associated with fullness.

  89. Kohno D. Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. J Physiol Sci. 2017;67:459–65.

    CAS  PubMed  Google Scholar 

  90. •• Crézé C, Candal L, Cros J, Knebel J-F, Seyssel K, Stefanoni N, et al. The impact of caloric and non-caloric sweeteners on food intake and brain responses to food: a randomized crossover controlled trial in healthy humans. Nutrients. 2018;10:615. Findings showed that the acute consumption of a NNS drink prompted differential neural activation towards palatable food cues, compared with a sucrose drink or a water control, among healthy adults.

    PubMed Central  Google Scholar 

  91. Crézé C, Notter-Bielser M-L, Knebel J-F, Campos V, Tappy L, Murray M, et al. The impact of replacing sugar- by artificially-sweetened beverages on brain and behavioral responses to food viewing - an exploratory study. Appetite. 2018;123:160–8.

    PubMed  Google Scholar 

  92. Rudenga KJ, Small DM. Amygdala response to sucrose consumption is inversely related to artificial sweetener use. Appetite. 2012;58:504–7.

    CAS  PubMed  Google Scholar 

  93. Green E, Murphy C. Altered processing of sweet taste in the brain of diet soda drinkers. Physiol Behav. 2012;107:560–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Opstal AMV, Hafkemeijer A, Berg-Huysmans AA van den, Hoeksma M, Mulder TPJ, Pijl H, Rombouts SARB, Grond J van der (2019) Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements and artificial sweeteners. Nutr Neurosci 0:1–11.

  95. Curtis KS, Davis LM, Johnson AL, Therrien KL, Contreras RJ. Sex differences in behavioral taste responses to and ingestion of sucrose and NaCl solutions by rats. Physiol Behav. 2004;80:657–64.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health (NIH) National Institute of Diabetes and Digestive and Kidney Diseases R01DK102794 (PI: K.A.P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen A. Page.

Ethics declarations

Conflict of Interest

The authors have nothing to disclose.

Human and Animal Rights and Informed Consent

All cited studies by the authors were approved by the institutional review boards of their respective institutions.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunker, A.G., Patel, R. & Page, K.A. Effects of Non-nutritive Sweeteners on Sweet Taste Processing and Neuroendocrine Regulation of Eating Behavior. Curr Nutr Rep 9, 278–289 (2020). https://doi.org/10.1007/s13668-020-00323-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-020-00323-3

Keywords

Navigation