Skip to main content
Log in

Neural Mechanisms of Food Decision-Making in Children

  • Nutrition and the Brain (J Nasser, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of the current paper is to review the literature on the neural and behavioral factors involved in food decision-making in youth.

Recent Findings

Recent neuroimaging studies that employ passive viewing paradigms have found that exposure to food-related cues activate reward, motor planning, and attentional salience signals in children. Greater activations of reward signals and/or lower activations of control signals are associated with overeating and weight gain. Neuroimaging studies with decision-making paradigms have found the reward network in the brain activates during food choices, while control network activates less strongly.

Summary

Findings suggest that exposure to food cues activates reward/valuation network, but activation of control network tends to be relatively weaker in children. Hedonic aspects of foods are predominantly considered in children’s food choices, and their dietary self-control is not matured yet. The increased activation in reward network and the decreased activation in control network are associated with risk of developing obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Linabery AM, Nahhas RW, Johnson W, Choh AC, Towne B, Odegaard AO, et al. Stronger influence of maternal than paternal obesity on infant and early childhood body mass index: the Fels Longitudinal Study. Pediatr Obes. 2013;8(3):159–69. https://doi.org/10.1111/j.2047-6310.2012.00100.x.

    Article  CAS  PubMed  Google Scholar 

  2. Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, et al. Maturation of the adolescent brain. Neuropsychiatr Dis Treat. 2013;9:449–61. https://doi.org/10.2147/NDT.S39776.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Casey BJ, Tottenham N, Liston C, Durston S. Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci. 2005;9(3):104–10. https://doi.org/10.1016/j.tics.2005.01.011.

    Article  CAS  PubMed  Google Scholar 

  4. Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007-2008 to 2015-2016. Jama. 2018;319(16):1723–5. https://doi.org/10.1001/jama.2018.3060.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cali AM, Caprio S. Obesity in children and adolescents. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S31–6. https://doi.org/10.1210/jc.2008-1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Flynn MA, McNeil DA, Maloff B, Mutasingwa D, Wu M, Ford C, et al. Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with 'best practice' recommendations. Obes Rev. 2006;7(Suppl 1):7–66. https://doi.org/10.1111/j.1467-789X.2006.00242.x.

    Article  PubMed  Google Scholar 

  7. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. Jama. 2016;315(21):2292–9. https://doi.org/10.1001/jama.2016.6361.

  8. Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr. 2007;150(1):12–7.e2. https://doi.org/10.1016/j.jpeds.2006.08.042.

    Article  PubMed  Google Scholar 

  9. van Geel M, Vedder P, Tanilon J. Are overweight and obese youths more often bullied by their peers? A meta-analysis on the correlation between weight status and bullying. Int J Obes. 2014;38(10):1263–7. https://doi.org/10.1038/ijo.2014.117.

    Article  Google Scholar 

  10. Puhl RM, King KM. Weight discrimination and bullying. Best Pract Res Clin Endocrinol Metab. 2013;27(2):117–27. https://doi.org/10.1016/j.beem.2012.12.002.

    Article  PubMed  Google Scholar 

  11. May AL, Kuklina EV, Yoon PW. Prevalence of cardiovascular disease risk factors among US adolescents, 1999-2008. Pediatrics. 2012;129(6):1035–41. https://doi.org/10.1542/peds.2011-1082.

    Article  PubMed  Google Scholar 

  12. Rankin J, Matthews L, Cobley S, Han A, Sanders R, Wiltshire HD, et al. Psychological consequences of childhood obesity: psychiatric comorbidity and prevention. Adolesc Health Med Ther. 2016;7:125–46. https://doi.org/10.2147/ahmt.s101631.

  13. Obesity WHTFoC. Solving the problem of childhood obesity within a generation. Washington, DC: White House Task Force on Childhood Obesity Report to the President; 2010.

    Google Scholar 

  14. Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17(2):95–107. https://doi.org/10.1111/obr.12334.

    Article  CAS  PubMed  Google Scholar 

  15. Bruce AS, Lim SL, Smith TR, Cherry JB, Black WR, Davis AM, et al. Apples or candy? Internal and external influences on children's food choices. Appetite. 2015;93:31–4. https://doi.org/10.1016/j.appet.2015.04.061.

    Article  PubMed  Google Scholar 

  16. Scaglioni S, Arrizza C, Vecchi F, Tedeschi S. Determinants of children's eating behavior. Am J Clin Nutr. 2011;94(6 Suppl):2006s–11s. https://doi.org/10.3945/ajcn.110.001685.

    Article  CAS  PubMed  Google Scholar 

  17. Savage JS, Fisher JO, Birch LL. Parental influence on eating behavior: conception to adolescence. J Law, Med Ethics. 2007;35(1):22–34. https://doi.org/10.1111/j.1748-720X.2007.00111.x.

    Article  Google Scholar 

  18. Yee AZ, Lwin MO, Ho SS. The influence of parental practices on child promotive and preventive food consumption behaviors: a systematic review and meta-analysis. Int J Behav Nutr Phys Activity. 2017;14(1):47. https://doi.org/10.1186/s12966-017-0501-3.

    Article  Google Scholar 

  19. Larsen JK, Hermans RC, Sleddens EF, Engels RC, Fisher JO, Kremers SP. How parental dietary behavior and food parenting practices affect children's dietary behavior. Interacting sources of influence? Appetite. 2015;89:246–57. https://doi.org/10.1016/j.appet.2015.02.012.

    Article  PubMed  Google Scholar 

  20. Gibbs H, Chapman-Novakofski K. A review of health literacy and its relationship to nutrition education. Top Clin Nutr. 2012;27(4):325–33. https://doi.org/10.1097/TIN.0b013e31826f8dc5.

    Article  Google Scholar 

  21. Houldcroft L, Haycraft E, Farrow C. Peer and friend influences on children's eating. Soc Dev. 2014;23(1):19–40.

    Article  Google Scholar 

  22. Moss M. Salt, sugar, fat: how the food giants hooked us. New York: Random House; 2014.

    Google Scholar 

  23. Ha O-R, Bruce AS, Pruitt SW, Cherry JBC, Smith TR, Burkart D, et al. Healthy eating decisions require efficient dietary self-control in children: a mouse-tracking food decision study. Appetite. 2016;105:575–81. https://doi.org/10.1016/j.appet.2016.06.027.

    Article  PubMed  Google Scholar 

  24. Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 2009;324(5927):646–8. https://doi.org/10.1126/science.1168450.

    Article  CAS  PubMed  Google Scholar 

  25. Casey BJ, Getz S, Galvan A. The adolescent brain. Dev Rev. 2008;28(1):62–77. https://doi.org/10.1016/j.dr.2007.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crone EA, Steinbeis N. Neural perspectives on cognitive control development during childhood and adolescence. Trends Cogn Sci. 2017;21(3):205–15. https://doi.org/10.1016/j.tics.2017.01.003.

    Article  PubMed  Google Scholar 

  27. Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev. 2012;13(1):43–56. https://doi.org/10.1111/j.1467-789X.2011.00927.x.

    Article  CAS  PubMed  Google Scholar 

  28. Van den Eynde F, Treasure J. Neuroimaging in eating disorders and obesity: implications for research. Child Adolesc Psychiatr Clin N Am. 2009;18(1):95–115. https://doi.org/10.1016/j.chc.2008.07.016.

    Article  PubMed  Google Scholar 

  29. Stoeckel LE, Weller RE, Cook Iii EW, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage. 2008;41(2):636–47. https://doi.org/10.1016/j.neuroimage.2008.02.031.

    Article  PubMed  Google Scholar 

  30. Rothemund Y, Preuschhof C, Bohner G, Bauknecht H-C, Klingebiel R, Flor H, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. NeuroImage. 2007;37(2):410–21. https://doi.org/10.1016/j.neuroimage.2007.05.008.

  31. Le DSN, Pannacciulli N, Chen K, Salbe AD, Hill JO, Wing RR, et al. Less activation in the left dorsolateral prefrontal cortex in the reanalysis of the response to a meal in obese than in lean women and its association with successful weight loss. Am J Clin Nutr. 2007;86(3):573–9.

    Article  CAS  PubMed  Google Scholar 

  32. DelParigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM, et al. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes. 2006;31(3):440–8.

    Article  Google Scholar 

  33. Leng G, Adan RAH, Belot M, Brunstrom JM, de Graaf K, Dickson SL, et al. The determinants of food choice. Proc Nutr Soc. 2016;76:1–12. https://doi.org/10.1017/S002966511600286X.

  34. Roefs A, Franssen S, Jansen A. The dynamic nature of food reward processing in the brain. Curr Opin Clin Nutr Metab Care. 2018;21(6):444–8. https://doi.org/10.1097/mco.0000000000000504.

    Article  PubMed  Google Scholar 

  35. van der Laan LN, de Ridder DT, Viergever MA, Smeets PA. The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. Neuroimage. 2011;55(1):296–303. https://doi.org/10.1016/j.neuroimage.2010.11.055.

    Article  PubMed  Google Scholar 

  36. van Meer F, van der Laan LN, Adan RA, Viergever MA, Smeets PA. What you see is what you eat: an ALE meta-analysis of the neural correlates of food viewing in children and adolescents. NeuroImage. 2015;104:35–43. https://doi.org/10.1016/j.neuroimage.2014.09.069.

    Article  PubMed  Google Scholar 

  37. Leigh S-J, Morris MJ. The role of reward circuitry and food addiction in the obesity epidemic: an update. Biol Psychol. 2018;131:31–42. https://doi.org/10.1016/j.biopsycho.2016.12.013.

    Article  PubMed  Google Scholar 

  38. Devoto F, Zapparoli L, Bonandrini R, Berlingeri M, Ferrulli A, Luzi L, et al. Hungry brains: a meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals. Neurosci Biobehav Rev. 2018;94:271–85. https://doi.org/10.1016/j.neubiorev.2018.07.017.

  39. Luo S, Alves J, Hardy K, Wang X, Monterosso J, Xiang AH, et al. Neural processing of food cues in pre-pubertal children. Pediatr Obes. 2019;14(2):e12435. https://doi.org/10.1111/ijpo.12435.

  40. van Meer F, van der Laan LN, Charbonnier L, Viergever MA, Adan RA, Smeets PA, et al. Developmental differences in the brain response to unhealthy food cues: an fMRI study of children and adults. Am J Clin Nutr. 2016;104(6):1515–22. https://doi.org/10.3945/ajcn.116.137240.

    Article  CAS  PubMed  Google Scholar 

  41. Samara A, Li X, Pivik RT, Badger TM, Ou X. Brain activation to high-calorie food images in healthy normal weight and obese children: a fMRI study. BMC Obes. 2018;5:31. https://doi.org/10.1186/s40608-018-0209-1.

    Article  PubMed  PubMed Central  Google Scholar 

  42. • English LK, Fearnbach SN, Wilson SJ, Fisher JO, Savage JS, Rolls BJ, et al. Food portion size and energy density evoke different patterns of brain activation in children. Am J Clin Nutr. 2017;105(2):295–305. https://doi.org/10.3945/ajcn.116.136903Large Portion sizes suppressed activation of inhibitory control network, and high energy-dense foods provoked greater activations in reward and gustatory networks.

    Article  CAS  PubMed  Google Scholar 

  43. Fearnbach SN, English LK, Lasschuijt M, Wilson SJ, Savage JS, Fisher JO, et al. Brain response to images of food varying in energy density is associated with body composition in 7- to 10-year-old children: results of an exploratory study. Physiol Behav. 2016;162:3–9. https://doi.org/10.1016/j.physbeh.2016.03.007.

  44. Carnell S, Benson L, Chang KV, Wang Z, Huo Y, Geliebter A, et al. Neural correlates of familial obesity risk and overweight in adolescence. NeuroImage. 2017;159:236–47. https://doi.org/10.1016/j.neuroimage.2017.07.052.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bohon C. Brain response to taste in overweight children: a pilot feasibility study. PLoS One. 2017;12(2):e0172604. https://doi.org/10.1371/journal.pone.0172604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. •• Shearrer GE, Stice E, Burger KS. Adolescents at high risk of obesity show greater striatal response to increased sugar content in milkshakes. Am J Clin Nutr. 2018;107(6):859–66. https://doi.org/10.1093/ajcn/nqy050Activations in striatal, hedonic reward systems in response to sweet liquid foods were greater in adolescents with parental obesity risk compare to those without parental obesity risk. Increased level of reward network activation is related to high-obesity-risk.

    Article  PubMed  PubMed Central  Google Scholar 

  47. •• Stice E, Yokum S. Gain in body fat is associated with increased striatal response to palatable food cues, whereas body fat stability is associated with decreased striatal response. J Neurosci. 2016;36(26):6949–56. https://doi.org/10.1523/JNEUROSCI.4365-15.2016Increased activations in reward network in response to anticipations to liquid foods were shown in adolescents who gained body fat, whereas adolescents who maintained or lost body fat showed decreased activations in reward network.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stice E, Yokum S. Relation of neural response to palatable food tastes and images to future weight gain: using bootstrap sampling to examine replicability of neuroimaging findings. NeuroImage. 2018;183:522–31. https://doi.org/10.1016/j.neuroimage.2018.08.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adise S, Geier CF, Roberts NJ, White CN, Keller KL. Is brain response to food rewards related to overeating? A test of the reward surfeit model of overeating in children. Appetite. 2018;128:167–79. https://doi.org/10.1016/j.appet.2018.06.014.

    Article  PubMed  Google Scholar 

  50. Powell LM, Schermbeck RM, Chaloupka FJ. Nutritional content of food and beverage products in television advertisements seen on children's programming. Child Obes. 2013;9(6):524–31. https://doi.org/10.1089/chi.2013.0072.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gearhardt AN, Yokum S, Harris JL, Epstein LH, Lumeng JC. Neural response to fast food commercials in adolescents predicts intake. Am J Clin Nutr. 2020;111:493–502. https://doi.org/10.1093/ajcn/nqz305.

    Article  PubMed  Google Scholar 

  52. Masterson TD, Stein WM, Beidler E, Bermudez M, English LK, Keller KL. Brain response to food brands correlates with increased intake from branded meals in children: an fMRI study. Brain Imaging Behav. 2019;13(4):1035–48. https://doi.org/10.1007/s11682-018-9919-8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. •• Lim SL, Cherry JB, Davis AM, Balakrishnan SN, Ha OR, Bruce JM, et al. The child brain computes and utilizes internalized maternal choices. Nat Commun. 2016;7:11700. https://doi.org/10.1038/ncomms11700When children made own food choices, reward signals activated primarily and faster than control signals. When children made perceived maternal food choices for them, inhibitory signals involved in food decision-making, which suggested that neural internalization of parental regulation may guide children’s decision-making until the maturation of dietary self-control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. •• van Meer F, van der Laan LN, Viergever MA, Adan RAH, Smeets PAM, Consortium IF. Considering healthiness promotes healthier choices but modulates medial prefrontal cortex differently in children compared with adults. NeuroImage. 2017;159:325–33. https://doi.org/10.1016/j.neuroimage.2017.08.007Choices of accepting foods activated greater responses in the ventromedial prefrontal cortex (reward network). Compared to adults, the activation of the dorsolateral prefrontal cortex (control network) in response to foods was weaker in children during food choices.

    Article  PubMed  Google Scholar 

  55. • Bruce AS, Pruitt SW, Ha OR, Cherry JB, Smith TR, Bruce JM, et al. The influence of televised food commercials on children's food choices: evidence from ventromedial prefrontal cortex activations. J Pediatr. 2016;177:27–32 e1. https://doi.org/10.1016/j.jpeds.2016.06.067Exposure to food commercials increased activations in the ventromedial prefrontal cortex (reward network) during food choices.

  56. Brown TJ, Mead E, Ells LJ. Behavior-changing interventions for treating overweight or obesity in children aged 6 to 11 years. JAMA Pediatr. 2019;173(4):385–6. https://doi.org/10.1001/jamapediatrics.2018.5494.

    Article  PubMed  Google Scholar 

  57. Brown T, Moore TH, Hooper L, Gao Y, Zayegh A, Ijaz S, et al. Interventions for preventing obesity in children. Cochrane Database System Rev. 2019;7:Cd001871. https://doi.org/10.1002/14651858.CD001871.pub4.

    Article  Google Scholar 

  58. Rollins BY, Savage JS, Fisher JO, Birch LL. Alternatives to restrictive feeding practices to promote self-regulation in childhood: a developmental perspective. Pediatr Obes. 2016;11(5):326–32. https://doi.org/10.1111/ijpo.12071.

    Article  CAS  PubMed  Google Scholar 

  59. Fonagy P, Target M. Early intervention and the development of self-regulation. Psychoanal Inq. 2002;22(3):307–35. https://doi.org/10.1080/07351692209348990.

    Article  Google Scholar 

  60. Diamond A, Barnett WS, Thomas J, Munro S. Preschool program improves cognitive control. Science. 2007;318(5855):1387–8. https://doi.org/10.1126/science.1151148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Blair C, Diamond A. Biological processes in prevention and intervention: the promotion of self-regulation as a means of preventing school failure. Dev Psychopathol. 2008;20(3):899–911. https://doi.org/10.1017/S0954579408000436.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ha O-R, Killian H, Bruce JM, Lim S-L, Bruce AS. Food advertising literacy training reduces the importance of taste in children’s food decision-making: a pilot study. Front Psychol. 2018;9(1293). https://doi.org/10.3389/fpsyg.2018.01293.

  63. Kochanska G, Philibert RA, Barry RA. Interplay of genes and early mother-child relationship in the development of self-regulation from toddler to preschool age. J Child Psychol Psychiatry Allied Discip. 2009;50(11):1331–8. https://doi.org/10.1111/j.1469-7610.2008.02050.x.

    Article  Google Scholar 

  64. Kochanska G, Coy KC, Murray KT. The development of self-regulation in the first four years of life. Child Dev. 2001;72(4):1091–111.

    Article  CAS  PubMed  Google Scholar 

  65. Bandura A, Grusec JE, Menlove FL. Observational learning as a function of symbolization and incentive set. Child Dev. 1966;37(3):499–506.

    Article  CAS  PubMed  Google Scholar 

  66. Frankel LA, Hughes SO, O'Connor TM, Power TG, Fisher JO, Hazen NL. Parental influences on children's self-regulation of energy intake: insights from developmental literature on emotion regulation. J Obes. 2012;2012:327259–12. https://doi.org/10.1155/2012/327259.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Galinsky AD, Maddux WW, Gilin D, White JB. Why it pays to get inside the head of your opponent: the differential effects of perspective taking and empathy in negotiations. Psychol Sci. 2008;19(4):378–84. https://doi.org/10.1111/j.1467-9280.2008.02096.x.

    Article  PubMed  Google Scholar 

  68. Anderson SE, Keim SA. Parent-child interaction, self-regulation, and obesity prevention in early childhood. Curr Obes Rep. 2016;5(2):192–200. https://doi.org/10.1007/s13679-016-0208-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda S. Bruce.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, OR., Lim, SL. & Bruce, A.S. Neural Mechanisms of Food Decision-Making in Children. Curr Nutr Rep 9, 236–250 (2020). https://doi.org/10.1007/s13668-020-00321-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-020-00321-5

Keywords

Navigation