Skip to main content

Advertisement

Log in

Soy Isoflavones and Gastrointestinal Health

  • Functional Foods (CM Whisner, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Soy isoflavones are known to have beneficial effects on several aspects of gastrointestinal physiological functions (contractility or motility, secretion, morphology, and barrier function). In this review, we discuss the effects of soy isoflavones on the overall gut function and inflammation and assess how these effects might be implicated in the treatment of several gut-related diseases.

Recent Findings

Soy isoflavones influence several key aspects of gastrointestinal health: improve basal intestinal secretion, alleviate inflammation, limit intestinal morphological damage, and improve epithelial barrier function in several clinically relevant murine models of gastrointestinal diseases.

Summary

Dietary supplementation with isoflavones proves to be a key means to improve the overall gut function and health. Future mechanistic studies with isoflavone interventions will help treat clinically related diseases such as cystic fibrosis and inflammatory-related gut problems such as colitis and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Peery AF, Crockett SD, Murphy CC, Lund JL, Dellon ES, Williams JL, et al. Burden and cost of gastrointestinal, liver and pancreatic diseses in the United States: update 2018. Gastroentorology. 2019;156(1):254.

    Google Scholar 

  2. Burns G, Pryor J, Holtmann G, Walker MM, Talley NJ, Keely S. Immne activation in functional gastrointestinal disorders. Gastroenterol Hepatol. 2019;15:539–48.

    Google Scholar 

  3. Zhou Q, Zhang B, Verne GN. Intestinal membrane permeability and hypersensitivity in the iritable bowel syndrome. Pain. 2009;146:41–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Martinez C, Vicario M, Ramos L, Lobo B, Alonso C, Sanchez A, et al. The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are manifested with mucosal pathobiology and clinical manifestations. Am J Gastroenterol. 2012;107:736–46.

    CAS  PubMed  Google Scholar 

  5. Everhart JE, Ruhl CE. Burden of digestive diseases in the United States part II: lower gastrointestinal diseases. Gastroenterology. 2009;136:741–54.

    PubMed  Google Scholar 

  6. Pal S. Direct costs for digestive diseases. US Pharm. 2010;35:10–4.

    Google Scholar 

  7. Zhu C, Wu Y, Jiang Z, Zheng C, Wang L, Yang X, et al. Dietary soy isoflavone attenutaed growth performance and intestinal barrier functions in weaned piglets challenged with lipopolysaccharide. Int Immunopharmacol. 2015;28:288–94.

    CAS  PubMed  Google Scholar 

  8. Catmull S, Masood F, Schacht S, Dolan R, Stegman D, Leung L, et al. Dietary genistein rescues reduced basal chloride secretion in diabetic jejunum via sex-dependent mechanisms. Cell Physiol Biochem. 2016;40:335–46.

    CAS  PubMed  Google Scholar 

  9. Abron JD, Singh NP, Price RL, Nagarkatti M, Nagarkatti PS, Singh UP. Genistein induces macrophage polarization and systemic cytokine to ameliorate experimental colitis. PLoS One. 2018;13:e0199631.

    PubMed  PubMed Central  Google Scholar 

  10. • Lord R, Fairbourn N, Mylavarapu C, Dbeis A, Bowman T, Chandrashekar A, et al. Consuming genistein improves survival rates in the absence of laxative in deltaF508-CF female mice. Nutrients. 2018;10:1–12 This reference provides evidence that dietary genistein supplementation can preclude the dependence of CF mice for constant laxative use. Due to loss of CFTR function, CF intestines readily become impacted, genistein prevents this impaction.

  11. Sato Y, Itagaki S, Oikawa S, Ogura J, Kobayashi M, Hirano T, et al. Protective effect of soy isoflavone genistein on ischemia-reperfusion in the rat small intestine. Biol Pharm Bull. 2011;34:1448–54.

    CAS  PubMed  Google Scholar 

  12. Moussa L, Bezirard V, Salvator-Cartier C, Bacquie V, Lencina C, Leveque M, et al. A low dose of fermented soy germ alleviates gut barrier injury, hyperalgesia and faecal protease actrivity in a rat model of inflammatory disease. PLoS One. 2012;7:e49547.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kamboh AA, Zhu W-Y. Individual and combined effects of genistein and hesperidin on immunity and intestinal morphology in lipopolysacharide-challenged broiler chikens. Poult Sci. 2014;93:2175–83.

    CAS  PubMed  Google Scholar 

  14. Piegholdt S, Pallauf K, Esatbeyoglu T, Speck N, Reiss K, Ruddigkeit L, et al. Biochanin a and prunetin improve epithelial barrier function in intestinal CaCo-2 cells via downregulation of ERK, NF-KB and tyrosine phosphorylation. Free Radic Biol Med. 2014;70:255–64.

    CAS  PubMed  Google Scholar 

  15. Jalili M, Vahedi H, Janani L, Poustchi H, Malekzadeh R, Hekmatdoost A. Soy isoflavones supplementation for patients with irritable bowel syndrome: a randomized double blind clinical trial. Middle East J Dig Dis. 2015;7:170–6.

    PubMed  PubMed Central  Google Scholar 

  16. Choi S, Woo J-K, Jang Y-S, Kang J-H, Jang J-E, Yi T-H, et al. Fermented Pueraria Lobata extract ameliorates dextran sulfate sodium-induced colitis by reducing pro-inflammatory cytokines and recovering intestinal barrier function. Lab Anim Res. 2016;32:151–9.

    PubMed  PubMed Central  Google Scholar 

  17. Calvello R, Aresta A, Trapani A, Zambonin C, Cianciulli ARS, Clodoveo ML, et al. Bovine and soybean milk bioactive compounds: effects on inflammatory response of human intestinal Caco-2 cells. Food Chem. 2016;210:276–85.

    CAS  PubMed  Google Scholar 

  18. Bitzer ZT, Wopperer AL, Chrisfield BJ, Tao L, Cooper TK, Vanamala J, et al. Soy protein conventrate mitigates markers of colonic inflammation and loss of gut barrier function in vitro and in vivo. J Nutr Biochem. 2017;40:201–8.

    CAS  PubMed  Google Scholar 

  19. Wang B, Wu C. Dietary soy isoflavones alleviate dextran sulfate sodium-induced inflammation and oxidative stress in mice. Exp Ther Med. 2017;14:276–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gentile D, Fornai M, Colucci R, Pellegrini C, Tirotta E, Benvenuti L, et al. The flavonoid compound apigenin prevents colonic inflammation and motor dysfunctions associated with high fat diet-induced obesity. PLoS One. 2018;13:e0195502.

    PubMed  PubMed Central  Google Scholar 

  21. Vanden Braber NL, Novotny Nunez I, Bohl L, Porporatto C, Nazar FN, Montenegro MA, et al. Soy genistein administered in soluble chitosan microcapsules maintains antioxidant activity and limits intestinal inflammation. J Nutr Biochem. 2018;62:50–8.

    Google Scholar 

  22. Yazici S, Ozcan CU, Hismiogullari AA, Sunay FB, Ozcan T, Berksoy EA, et al. Protective effects of quercetin on necrotizing enterocolitis in a neonatal rat model. Am J Perinatol. 2018;35:434–40.

    PubMed  Google Scholar 

  23. Atiq A, Shal B, Naveed M, Khan A, Ali J, Zeeshan S, et al. Diadzein ameliorates 5-fluorocil-induced intestinal mucositis by suppressing oxidateive stress and inflammatory mediators in rodents. Eur J Pharmacol. 2019;843:292–306.

    CAS  PubMed  Google Scholar 

  24. • Guven B, Can M, Piskin O, Aydin BG, Karakaya K, Elmas O. Acikgoz B: Flavonoids protect colon against radiation induced colitis. Regul Toxicol Pharmacol. 2019;104:128–32 This reference provides interesting finding demonstrating the use of flavonoids to protect the GI tract against radiation-induced injury.

  25. Luo Q, Cheng D, Huang C, Li Y, Lao C, Xia Y, et al. Improvements of colonic immune function with soy isoflavones in high-fat diet-induced obese rats. Molecules. 2019;24. https://doi.org/10.3390/molecules24061139.

  26. Rehman K, Ali MB, Akash MSH. Genistein enhances the secretion of glucagon-like peptide-1 (GLP-1) via downregulation of inflammatory responses. Biomed Pharmacother. 2019;112:108670.

    CAS  PubMed  Google Scholar 

  27. Jalili M, Vahedi H, Poustchi H, Hekmatdoost A. Soy isoflavones and cholecalciferol reduce inflammation, and gut permeability, without any effect on antioxidant capacity in irritable bowel syndrome: a randomized clinial trial. Clin Nutr ESPEN. 2019;34:50–4.

    PubMed  Google Scholar 

  28. Yamamoto T, Matsunami E, Komori K, Hayashi S, Kadowaki M. The isoflavone puerarin induces Foxp3+ regulatory T cells by augmenting retinoic acid production, therby inducing mucosal immune tolerance in a murine food allergy model. Biochem Biophys Res Commun. 2019;516:626–31.

    CAS  PubMed  Google Scholar 

  29. Shen J, Li N, Zhang X. Daidzein ameliorates dextran sulfate sodium-induced experimental colitis in mice by regulating NF-KB signaling. J Exp Pathol Toxicol Oncol. 2019;38:29–39.

    Google Scholar 

  30. Esposito S, Villella VR, Ferrari E, Monzani R, Tosco A, Rossin F, et al. Genistein antagonizes gliadin-induced CFTR malfunctionin models of celiac disease. Aging. 2019;11:2003–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Suzuki T, Hara H. Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem. 2011;22:401–8.

    CAS  PubMed  Google Scholar 

  32. Grubb BR. Ion transport across the normal and CF neonatal murine intestine. Am J Phys. 1999;277:G167–74.

    CAS  Google Scholar 

  33. Baker MJ, Hamilton KL. Genistein stimulates electrogenic Cl secretion in the mouse jejunum. Am J Phys. 2004;287:C1636–45.

    CAS  Google Scholar 

  34. Gharzouli K, Holzer P. Inhibition of guinea pig intestinal peristalsis by the flavonoids quercetin, naringenin, apigenin and genistein. Pharmacology. 2004;70:5–14.

    CAS  PubMed  Google Scholar 

  35. Chao P-C, Hamilton KL. Genistein stimulates electrogenic Cl- secretion via phosphodiesterase modulation in the mouse jejunum. Am J Phys. 2009;297:C688–98.

    CAS  Google Scholar 

  36. Tuo B, Wen G, Song P, Xu J, Liu X, Seidler U, et al. Genistein stimulates duodenal HCO3 secretion through PI3K pathway in mice. Eur J Pharmacol. 2011;651:159–67.

    CAS  PubMed  Google Scholar 

  37. Al-Nakkash L, Batia L, Bhakta M, Peterson A, Hale N, Skinner R, et al. Stimulation of murine intestinal secretion by daily genistein injections: gender-dependent differences. Cell Physiol Biochem. 2011;28:239–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen D-T, Xiong X, Tang Z, Lv B, Lin Y. Inhibitory effects of daidzein on intestinal motility in normal and high contractile states. Pharm Biol. 2012;12:1561–6.

    Google Scholar 

  39. Al-Nakkash L. Genistein stimulates jejunal chloride secretion via sex-dependent, estrogen receptor or adenylate cyclase mechanisms. Cell Physiol Biochem. 2012;30:137–50.

    CAS  PubMed  Google Scholar 

  40. Xiong Y-J, Chen D-P, Lv B-C, Liu F-F, Wang L, Lin Y. The characteristics of genistin-induced inhibitory effects on intestinal motility. Arch Pharm Res. 2013;36:345–52.

    CAS  PubMed  Google Scholar 

  41. Zhang L-X, Li H-F, Wang L-D, Jin S, Dou X-C, Tian Z-F, et al. Resveratrol and genistein inhibition of rat isolated gastrointestinal contractions and related mechanisms. World J Gastroenterol. 2014;20:15335–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Leung L, Bhakta A, Cotangco K, Al-Nakkash L. Genistein stimulates jejunum chloride secretion via an Akt-mediated pathway in intact female mice. Cell Physiol Biochem. 2015;35:1317–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Santos-Fagundes D, Grasa L, Gonzalo S, Valero MS, Castro M, Arruebo MP, et al. Different mechanisms of actions of genistein and quercetin on spntaneous conractions of rabbit duodenum. Rev Esp Enferm Dig. 2015;107:413–6.

    CAS  PubMed  Google Scholar 

  44. Shin DH, Lee MJ, Jiao HY, Choi S, Kim MW, Park CG, et al. Regulatory roles of endogenous mitogen-activated protein kinases and tyrosine kinases in the pacemaker activity of colonic interstitial cells of Cajal. Pharmacology. 2015;96:16–24.

    CAS  PubMed  Google Scholar 

  45. Schacht S, Masood F, Catmull S, Dolan R, Altabtabaee R, Grow W, et al. Dietary genistein influences number of acetylcholine receptors in female diabetic jejunum. J Diabetes Res. 2017;2017:3568146.

    PubMed  PubMed Central  Google Scholar 

  46. Isenberg JI, Selling JA, Hogan DL, Koss MA. Impaired proximal duodenal mucosal bicarbonate secretion in patients with duodenal ulcer. N Engl J Med. 1987;316:374–9.

    CAS  PubMed  Google Scholar 

  47. Leung L, Kang J, Rayyan E, Bhakta A, Barrett B, Larsen D, et al. Decreased basal chloride secretion and altered CFTR, villin and GLUT5 protein expression in jejunum from ob/ob mice. Diabetes Metab Syndr Obes. 2014;7:1–10.

    Google Scholar 

  48. Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307–43.

    CAS  PubMed  Google Scholar 

  49. Farrugia G. Interstitial cells in health and disease. Neurogastroenterol Motil. 2008;20:54–63.

    PubMed  Google Scholar 

  50. Amira S, Rotondo A, Mule F. Relaxant effects of flavonoids on the mouse isolated stomach: structure-activity relationships. Eur J Pharmacol. 2008;599:126–30.

    CAS  PubMed  Google Scholar 

  51. Koike K, Moore FA, Moore EE, Read RA, Carl VS, Banerjee A. Gut ischemia mediates lung injury by a xanthine oxidase-dependent neutrophil mechanism. J Surg Res. 1993;54:469–73.

    CAS  PubMed  Google Scholar 

  52. Wang H, Fowler MI, Messenger DJ, Terry LA, Gu X, Zhou L, et al. Homoisoflavonoids are potent glucose transporter 2 (GLUT2) inhibitors: a potential mechanism for the gluocse-lowering properties of Polygonatum odoratum. J Agric Food Chem. 2018;66:3137–45.

    CAS  PubMed  Google Scholar 

  53. Jin M, Shen M-H, Jin M-H, Jin A-H, Yin X-Z, Quan J-S. Hypoglycemic property of soy isoflavones from hypocotyl in Goto-Kakizaki diabetic rats. J Clin Biochem Nutr. 2018;62:148–54.

    CAS  PubMed  Google Scholar 

  54. Schleipen B, Hertrampf T, Fritzemeier KH, Kluxen FM, Lorenz A, Molzberger A, et al. ERΒ-specific agonists and genistein inhibit proliferation and induce apoptosis in the large and small intestine. Carcinogenesis. 2011;32:1675–83.

    CAS  PubMed  Google Scholar 

  55. Zhang Y, Li Q, Zhou D, Chen H. Genistein, a soya isoflavone, prevents azoxymethane-induced up-regulation of WNT/B-catenin signalling and reduced colon pre-neoplasia in rats. Br J Nutr. 2013;109:33–42.

    CAS  PubMed  Google Scholar 

  56. Chen Z, Yuan Q, Xu G, Chen H, Lei H, Su J. Effects of quercetin on proliferation and H2O2-induced apoptosis of intestinal procine enterocyte cells. Molecules. 2018;23:1–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layla Al-Nakkash.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Functional Foods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Nakkash, L., Kubinski, A. Soy Isoflavones and Gastrointestinal Health. Curr Nutr Rep 9, 193–201 (2020). https://doi.org/10.1007/s13668-020-00314-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-020-00314-4

Keywords

Navigation