Skip to main content

Advertisement

Log in

Plant–floral visitor network structure in a smallholder Cucurbitaceae agricultural system in the tropics: implications for the extinction of main floral visitors

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Animal pollination is responsible for the majority of the human food supply. Understanding pollination dynamics in agricultural systems is thus essential to help maintain this ecosystem service in the face of human disturbances. Surprisingly, our understanding of plant–pollinator interactions in widely distributed smallholder agricultural systems is still limited. Knowledge of pollination dynamics in these agricultural systems is necessary to fully assess how human disturbances may affect pollination services worldwide. In this study, we describe the structure of a plant–floral visitor network in a smallholder Cucurbitaceae agricultural system. We further identify the main floral visitors of these crops and tested their importance by simulating how their extinction affected network structure and robustness. The observed network was highly connected and generalized but it was neither nested nor compartmentalized. Our results suggest that the structure of agricultural plant–pollinator networks could be inherently different from those in natural communities. These differences in network structure may reflect differences in spatial distribution of floral resources between agricultural and natural systems. We identified Augochlora nigrocyanea and Peponapis limitaris as the two most frequent floral visitors. However, removal of these species did not affect network structure or its robustness, suggesting high levels of interaction rewiring. To our knowledge, this is one of the first studies to describe the structure of a plant–floral visitor network in diverse agricultural systems in the tropics. We emphasize the need for more studies that evaluate network structure in agricultural systems if we want to fully elucidate the impact of human disturbances on this key ecosystem service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    Article  PubMed  Google Scholar 

  • Aizen MA, Sabatino M, Tylianakis JM (2012) Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335:1486–1489

    Article  CAS  PubMed  Google Scholar 

  • Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 12:1796–1807

    Article  Google Scholar 

  • Allen-Wardell G, Bernhardt P, Bitner R et al (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17

    Article  Google Scholar 

  • Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(8):1227–1239

    Article  Google Scholar 

  • Ashworth L, Quesada M, Casas A, Aguilar R, Oyama K (2009) Pollinator-dependent food production in Mexico. Biol Conserv 142:1050–1057

    Article  Google Scholar 

  • Bartomeus I (2013) Understanding linkage rules in plant-pollinator networks by using hierarchical models that incorporate pollinator detectability and plant traits. PLoS ONE 8:e69200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  CAS  PubMed  Google Scholar 

  • Basu P, Bhattacharya R, Lannetta PP (2011) A decline in pollinator dependent vegetable crop productivity in India indicates pollination limitation and consequent agro-economic crises. Nat Precedings hdl:10101/npre.2011.6044.1

  • Basu P, Parui AK, Chatterjee S, Dutta A, Chakraborty P, Roberts S, Smith B (2016) Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecol Evol 6:6983–6992

    Article  PubMed  PubMed Central  Google Scholar 

  • Bawa KS, Kress WJ, Nadkarni NM, Lele S, Raven PH, Janzen DH et al (2004) Tropical ecosystems into the 21st century. Science 306:227–228

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt CE, Mitchell RJ, Michaels HJ (2008) Effects of population size and density on pollinator visitation, pollinator behavior, and pollen tube abundance in Lupinus perennis. Int J Plant Sci 169:944–953

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:1

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N (2007) Specialization, constraints and conflicting interests in mutualistic networks. Curr Biol 17:341–346

    Article  PubMed  Google Scholar 

  • Burkle LA, Alarcón R (2011) The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538

    Article  PubMed  Google Scholar 

  • Campos-Navarrete MJ, Parra-Tabla V, Ramos-Zapata J, Díaz-Castelazo C, Reyes-Novelo E (2013) Structure of plant–Hymenoptera networks in two coastal shrub sites in Mexico. Arth Plant Int 7:607–617

    Article  Google Scholar 

  • Cane JH (2008) A native ground-nesting bee (Nomia melanderi) sustainably managed to pollinate alfalfa across an intensively agricultural landscape. Apidologie 39:315–323

    Article  Google Scholar 

  • Canto-Aguilar A, Parra-Tabla V (2000) Importance of conserving alternative pollinators: assessing the pollination efficiency of the squash bee, Peponapis limitaris in Cucurbita moschata (Cucurbitaceae). J Insect Conserv 4:203–210

    Article  Google Scholar 

  • Chaplin-Kramer R, Dombeck E, Gerber J, Knuth KA, Mueller ND, Mueller M, Ziv G, Klein A-M (2014) Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc R Soc B 281:20141799

    Article  PubMed  PubMed Central  Google Scholar 

  • Chico-Ponce de León PA (1999) Atlas de procesos territoriales de Yucatán. Universidad Autónoma de Yucatán Mérida Yucatán

  • Core Team R (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dalsgaard B, Trøjelsgaard K, Martín González AM, Nogués-Bravo D, Ollerton J, Petanidou T et al (2013) Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36:1331–1340

    Article  Google Scholar 

  • Dormann CF, Gruber B, Fruend J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11

    Google Scholar 

  • Edwards FA, Edwards DP, Sloan S, Hamer KC (2014) Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield. PLoS ONE 9:e91695

    Article  PubMed  PubMed Central  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Grindeland JM, Sletvold N, Ims RA (2005) Effects of floral display size and plant density on pollinator visitation rate in a natural population of Digitalis purpurea. Funct Ecol 19:383–390

    Article  Google Scholar 

  • Guimãraes P, Guimãraes PR (2005) ANINHADO 1.0. (www. guimares.bio.br)

  • Hegland SJ, Boeke L (2006) Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol 31:532–538

    Article  Google Scholar 

  • Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I (2008) Functional group diversity of bee pollinators increases crop yield. Proc R Soc Lond Biol 275:2283–2291

    Article  Google Scholar 

  • Hurd PD, Linsley EG, Whitaker TW (1971) Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 21:218–234

    Google Scholar 

  • Jordano P, Vázquez D, Bascompte J (2009) Redes complejas de interacciones mutualistas planta-animal. In: Medel R, Aizen M, Zamora R (eds) Ecología y evolución de interacciones planta-animal: conceptos y aplicaciones. Editorial Universitaria, Santiago de Chile, pp 17–41

    Google Scholar 

  • Julier HE, Roulston TH (2009) Wild bee abundance and pollination service in cultivated pumpkins: farm management, nesting behavior and landscape effects. J Econ Entomol 102:563–573

    Article  PubMed  Google Scholar 

  • Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13:442–452

    Article  PubMed  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Annu Rev Ecol Evol Syst 29:83–112

    Article  Google Scholar 

  • Kevan PG, Viana BF (2003) The global decline of pollination services. Biodiversity 4:3–8

    Article  Google Scholar 

  • King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol Evol 4:811–818

    Article  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc Lond Biol 270:955–961

    Article  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond Biol 274:303–313

    Article  Google Scholar 

  • Klein AM, Cunningham SA, Bos M, Steffan-Dewenter I (2008) Advances in pollination ecology from tropical plantation crops. Ecology 89:935–943

    Article  PubMed  Google Scholar 

  • Koski MH, Meindl GA, Arceo-Gomez G, Wolowoski M, LeCroy KA, Ashman TL (2015) Plant–flower visitor networks in a serpentine metacommunity: assessing traits associated with keystone plant species. Arthropod-Plant Int 9:9–21

    Article  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunin WE (1993) Sex and the single mustard: population density and pollinator behavior effects on seed-set. Ecology 7:2145–2160

    Article  Google Scholar 

  • Kunin WE (1997) Population size and density effects in pollination: pollinator foraging and plant reproductive success in experimental arrays of Brassica kaber. J Ecol 225–234

  • Marquitti FMD, Guimarães PR, Pires MM, Bittencourt LF (2014) MODULAR: software for the autonomous computation of modularity in large network sets. Ecography 37:221–224

    Article  Google Scholar 

  • Meléndez V, Magaña-Rueda S, Parra-Tabla V, Ayala R, Navarro J (2002) Diversity of native bee visitors of cucurbit in Yucatán, México. J Insect Conserv 6:135–147

    Article  Google Scholar 

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond B 271:2605–2611

    Article  Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717

    Article  PubMed  Google Scholar 

  • Morse RA, Calderone NW (2000) The value of honey bee pollination in the United States. Bee Culture 128:1–15

    Google Scholar 

  • Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 104:19680–19685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksanen JF, Blanchet G, Kindt R et al. (2015) vegan: Community ecology package. R package version 2.3-1

  • Olesen JM, Jordano P (2002) Geographic patterns in plant–pollinator mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padrón B, Traveset A, Biedenweg T, Díaz D, Nogales M, Olesen JM (2009) Impact of alien plant invaders on pollination networks in two archipelagos. PLoS ONE 4:e6275

    Article  PubMed  PubMed Central  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Ramos-Jiliberto R, Valdovinos FS, Moisset de Espanés P, Flores JD (2012) Topological plasticity increases robustness of mutualistic networks. J Anim Ecol 81:896–904

    Article  PubMed  Google Scholar 

  • Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J App Ecol 39:157–176

    Article  Google Scholar 

  • Schleuning M, Fründ J, Klein AM, Abrahamczyk S, Alarcón R, Albrecht M et al (2012) Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr Biol 22:1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Schmook B, Vance C (2009) Agricultural policy, market barriers, and deforestation: the case of Mexico’s southern Yucatán. World Dev 37:1015–1025

    Article  Google Scholar 

  • Smithson JB, Lenne JM (1996) Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann App Biol 128:127–158

    Article  Google Scholar 

  • Sowig P (1989) Effects of flowering plant’s patch size on species composition of pollinator communities, foraging strategies, and resource partitioning in bumblebees (Hymenoptera: Apidae). Oecologia 78:550–558

    Article  PubMed  Google Scholar 

  • Stang M, Klinkhamer PG, Van der Meijden E (2007) Asymmetric specialization and extinction risk in plant–flower visitor webs: a matter of morphology or abundance? Oecologia 151:442–453

    Article  PubMed  Google Scholar 

  • Tepedino V (1981) The pollination efficiency of squash bee (Peponapis pruinosa) and honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J Kansas Entomol Soc 54:359–377

    Google Scholar 

  • Terán S (2009) La milpa de los mayas. Mérida, UNAM

    Google Scholar 

  • Traveset A, Heleno R, Chamorro S, Vargas P, McMullen CK, Castro-Urgal R et al (2013) Invaders of pollination networks in the Galápagos Islands: emergence of novel communities. Proc R Soc Lond B 280:20123040

    Article  Google Scholar 

  • Trøjelsgaard K, Olesen JM (2013) Macroecology of pollination networks. Glob Ecol Biog 22:149–162

    Article  Google Scholar 

  • Tylianakis JM (2013) The global plight of pollinators. Science 339:1532–1533

    Article  CAS  PubMed  Google Scholar 

  • Vanbergen AJ (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259

    Article  Google Scholar 

  • Vázquez DP (2005) Degree distribution in plant–animal mutualistic networks: forbidden links or random interactions? Oikos 108:421–426

    Article  Google Scholar 

  • Vázquez DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 84:2493–2501

    Article  Google Scholar 

  • Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant–animal mutualistic networks: a review. Ann Bot 103:1445–1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira MC, Almeida-Neto M (2015) A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol Lett 18:144–152

    Article  PubMed  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965

    Article  Google Scholar 

  • Whitaker TW, Cutler HC (1965) Cucurbits and cultures in the Americas. Econ Bot 19:344–349

    Article  Google Scholar 

  • Willis DS, Kevan PG (1995) Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in southern Ontario. Can Entomol 127:167–175

    Article  Google Scholar 

  • Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Ann Rev Ecol Evol Sys 42:1–22

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their helpful comments on this manuscript. We thank CONACyT-SISIERRA (950604), IFS (B2523-1) and FMCNAC (C2-96–263) for financial support to VPT; and CONACyT to GAG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Arceo-Gómez.

Additional information

Handling Editor: Kristine Nemec.

Appendices

Appendix 1

See Fig. 2.

Fig. 2
figure 2

Species strength (interaction strength) for each one of the floral visitors observed in a Cucurbitaceae agricultural system

Appendix 2

See Table 2.

Table 2 Species identity, total number of visits and percent of visits for each of the floral visitors observed in the studied Cucurbitaceae agricultural system. The code (number) used for each floral visitor species in the network is indicated (see Fig. 1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra-Tabla, V., Campos-Navarrete, M.J. & Arceo-Gómez, G. Plant–floral visitor network structure in a smallholder Cucurbitaceae agricultural system in the tropics: implications for the extinction of main floral visitors. Arthropod-Plant Interactions 11, 731–740 (2017). https://doi.org/10.1007/s11829-017-9529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9529-1

Keywords

Navigation