Skip to main content

Advertisement

Log in

Predicting Unobserved Exposures from Seasonal Epidemic Data

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model with a contact rate that fluctuates seasonally. Through the use of a nonlinear, stochastic projection, we are able to analytically determine the lower dimensional manifold on which the deterministic and stochastic dynamics correctly interact. Our method produces a low dimensional stochastic model that captures the same timing of disease outbreak and the same amplitude and phase of recurrent behavior seen in the high dimensional model. Given seasonal epidemic data consisting of the number of infectious individuals, our method enables a data-based model prediction of the number of unobserved exposed individuals over very long times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We note the fact that while the inclusion of noise terms on other components makes the analysis more difficult, it will not affect the predictions as long as we stay away from bifurcation points.

References

  • Alonso, D., McKane, A. J., & Pascual, M. (2007). Stochastic amplification in epidemics. J. R. Soci. Interface 4, 14, 575–582.

    Article  Google Scholar 

  • Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans. London: Oxford University Press.

    Google Scholar 

  • Arnold, L. (1998). Random dynamical systems. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Arnold, L., & Imkeller, P. (1998). Normal forms for stochastic differential equations. Probab. Theory Relat. Fields, 110, 559–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Billings, L., & Schwartz, I. B. (2002). Exciting chaos with noise: unexpected dynamics in epidemic outbreaks. J. Math. Biol., 44, 31–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Billings, L., Bollt, E. M., & Schwartz, I. B. (2002). Phase-space transport of stochastic chaos in population dynamics of virus spread. Phys. Rev. Lett., 88, 234101.

    Article  Google Scholar 

  • Bjornstad, O. N., Finkenstadt, B. F., & Grenfell, B. T. (2002). Dynamics of measles epidemics: estimating scaling of transmission rates using a time series sir model. Ecol. Monogr., 72(2), 169–184.

    Google Scholar 

  • Blarer, A., & Doebeli, M. (1999). Resonance effects and outbreaks in ecological time series. Ecol. Lett., 2, 167–177.

    Article  Google Scholar 

  • Boxler, P. (1989). A stochastic version of center manifold theory. Probab. Theory Relat. Fields, 83, 509–545.

    Article  MathSciNet  MATH  Google Scholar 

  • Carr, J. (1981). Applications of centre manifold theory. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Chicone, C., & Latushkin, Y. (1997). Center manifolds for infinite dimensional nonautonomous differential equations. J. Differ. Equ., 141, 356–399.

    Article  MathSciNet  MATH  Google Scholar 

  • Clarkson, J. A., & Fine, P. E. M. (1985). The efficiency of Measles and Pertussis notification in England and Wales. Int. J. Epidemiol., 14(1), 153–168.

    Article  Google Scholar 

  • Colizza, V., Barrat, A., Barthelemy, M., & Vespignani, A. (2006). The modeling of global epidemics: stochastic dynamics and predictability. Bull. Math. Biol., 68, 1893–1921.

    Article  MathSciNet  Google Scholar 

  • Coullet, P. H., Elphick, C., & Tirapegui, E. (1985). Normal form of a Hopf bifurcation with noise. Phys. Lett. A, 111, 277–282.

    Article  MathSciNet  Google Scholar 

  • Doering, C. R., Sargsyan, K. V., & Sander, L. M. (2005). Extinction times for birth-death processes: exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation. Multiscale Model. Simul., 3(2), 283–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Duan, J., Lu, K., & Schmalfuss, B. (2003). Invariant manifolds for stochastic partial differential equations. Ann. Probab., 31(4), 2109–2135.

    Article  MathSciNet  MATH  Google Scholar 

  • Fine, P. E. M., & Clarkson, J. A. (1982a). Measles in England and Wales. 1. An analysis of factors underlying seasonal patterns. Int. J. Epidemiol., 11(1), 5–14.

    Article  Google Scholar 

  • Fine, P. E. M., & Clarkson, J. A. (1982b). Measles in England and Wales. 2. The impact of the measles vaccination program on the distribution of immunity in the population. Int. J. Epidemiol., 11(1), 15–25.

    Article  Google Scholar 

  • Forgoston, E., Billings, L., & Schwartz, I. B. (2009). Accurate noise projection for reduced stochastic epidemic models. Chaos, 19, 043110.

    Article  MathSciNet  Google Scholar 

  • Kelly-Hope, L., & Thomson, M. C. (2008). Climate and infectious diseases. In M. C. Thomson, M. Beniston, & R. Garcia-Herrera (Eds.), Advances in global change research: Vol. 30. Seasonal forecasts, climatic change and human health–health and climate (pp. 31–70).

    Chapter  Google Scholar 

  • Knobloch, E., & Wiesenfeld, K. A. (1983). Bifurcations in fluctuating systems: the center-manifold approach. J. Stat. Phys., 33(3), 611–637.

    Article  MathSciNet  MATH  Google Scholar 

  • Marion, G., Renshaw, E., & Gibson, G. (2000). Stochastic modelling of environmental variation for biological populations. Theor. Popul. Biol., 57(3), 197–217.

    Article  MATH  Google Scholar 

  • Mocek, W. T., Rudnicki, R., & Voit, E. O. (2005). Approximation of delays in biochemical systems. Math. Biosci., 198(2), 190–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Moreno, Y., Pastor-Satorras, R., & Vespignani, A. (2002). Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B, 26(4), 521–529.

    Google Scholar 

  • Namachchivaya, N. S. (1990). Stochastic bifurcation. Appl. Math. Comput., 38, 101–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Namachchivaya, N. S., & Lin, Y. K. (1991). Method of stochastic normal forms. Int. J. Non-Linear Mech., 26, 931–943.

    Article  MATH  Google Scholar 

  • Nåsell, I. (1999). On the time to extinction in recurrent epidemics. J. R. Stat. Soc. B, 61, 309–330.

    Article  MATH  Google Scholar 

  • Nguyen, H. T. H., & Rohani, P. (2008a). Noise, nonlinearity and seasonality: the epidemics of whooping cough revisited. J. R. Soc. Interface, 5(21), 403–413.

    Article  Google Scholar 

  • Nguyen, H. T. H., & Rohani, P. (2008b). Noise, nonlinearity and seasonality: the epidemics of whooping cough revisited. J. R. Soc. Interface, 5(21), 403–413.

    Article  Google Scholar 

  • Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic dynamics and endemic states in complex networks. Phys. Rev. E, 63, 066117.

    Article  Google Scholar 

  • Rand, D. A., & Wilson, H. B. (1991). Chaotic stochasticity—a ubiquitous source of unpredictability in epidemics. Proc. R. Soc. Lond. B, Biol. Sci., 246(1316), 179–184.

    Article  Google Scholar 

  • Roberts, A. J. (2008). Normal form transforms separate slow and fast modes in stochastic dynamical systems. Physica A, 387(1), 12–38.

    Article  MathSciNet  Google Scholar 

  • Rohani, P., Keeling, M. J., & Grenfell, B. T. (2002). The interplay between determinism and stochasticity in childhood diseases. Am. Nat., 159(5), 469–481.

    Article  Google Scholar 

  • Schaffer, W. M., Kendall, B. E., Tidd, C. W., & Olsen, L. F. (1993). Transient periodicity and episodic predictability in biological dynamics. IMA J. Math. Appl. Med., 10, 227–247.

    Article  MATH  Google Scholar 

  • Schwartz, I., & Smith, H. (1983). Infinite subharmonic bifurcations in an SEIR epidemic model. J. Math. Biol., 18, 233–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Schwartz, I. B., Billings, L., & Bollt, E. M. (2004). Dynamical epidemic suppression using stochastic prediction and control. Phys. Rev. E, 70, 046220.

    Article  Google Scholar 

  • Shaw, L. B., & Schwartz, I. B. (2008). Fluctuating epidemics on adaptive networks. Phys. Rev. E, 77, 066101.

    Article  MathSciNet  Google Scholar 

  • Shaw, L. B., Billings, L., & Schwartz, I. B. (2007). Using dimension reduction to improve outbreak predictability of multistrain diseases. J. Math. Biol., 55, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Stone, L., Olinky, R., & Huppert, A. (2007). Seasonal dynamics of recurrent epidemics. Nature, 446, 533–536.

    Article  Google Scholar 

  • Tidd, C. W., Olsen, L. F., & Schaffer, W. M. (1993). The case for chaos in childhood epidemics. ii. predicting historical epidemics from mathematical models. Proc. R. Soc. Lond. B, Biol. Sci., 254, 257–273.

    Article  Google Scholar 

  • Vazquez, A. (2006). Spreading dynamics on small-world networks with connectivity fluctuations and correlations. Phys. Rev. E, 74, 056101.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Office of Naval Research, and the National Institutes of Health. E.F. is supported by Award Number N0017310-2-C007 from the Naval Research Laboratory (NRL). I.B.S. was supported by the NRL Base Research Program N0001412WX30002, and by Award Number R01GM090204 from the National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Forgoston.

Appendices

Appendix A: Deterministic Model Reduction

The F 1, F 2, and F 3 expressions found in Eqs. (13a)–(13c) are given as follows:

(24a)
(24b)
(24c)

Appendix B: Stochastic Model Reduction

The stochastic, transformed equations are given as follows:

(25a)
(25b)
(25c)

As discussed in the article, we can use the deterministic center manifold result to reduce the stochastic model. Substituting the deterministic center manifold equation given by Eq. (21) into the full system of stochastic, transformed equations gives the following reduced stochastic model that describes the dynamics on the center manifold:

(26a)
(26b)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forgoston, E., Schwartz, I.B. Predicting Unobserved Exposures from Seasonal Epidemic Data. Bull Math Biol 75, 1450–1471 (2013). https://doi.org/10.1007/s11538-013-9855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9855-0

Keywords

Navigation