Skip to main content

Advertisement

Log in

Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Although the global importance of selenium (Se) deficiency to human and animal health has been recognized for decades, strategic Se fertilization interventions addressing agro-ecosystem specific conditions have not been developed. This research aims to identify such strategies based on an inventory of production-ecological factors controlling the potential impact of Se fertilizers on crop performance and nutritional content.

Methods

The effect of agro-ecosystem properties on crop response to Se fertilization was assessed using a meta-analysis approach based on 243 experiments performed during 1960 to 2014.

Results

The meta-analysis confirms the high impact of fertilization as an effective agronomic biofortification strategy. Site specific properties strongly affect crop responses to Se fertilization implying the need for tailor-made solutions. However, the minor influence of soil organic matter, total soil Se levels and acidity suggests that consideration of other agro-ecosystem properties like climate and bioavailable Se measurements is also required to optimize fertilizer strategies.

Conclusions

Fertilization characteristics including formulation, dose and timing were found to be driving variables enhancing crop Se uptake. The highest uptake efficiencies are found for foliar and selenate based fertilizers. The current low recoveries and the scarce resource availability challenges the fertilizer approach to develop strategies that maximize the uptake efficiency of Se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bahners N (1987) Selengehalte von Böden und deren Grasaufwuchs in der Bundesrepublik sowie Möglichkeiten der Selenanreicherung durch verschiedene Selen Düngungen. PhD thesis, Friedrich Wilhelms Universität, Bonn, 151 pp

  • Bisbjerg B, Gissel-Nielsen G (1969) The uptake of applied selenium by agricultural plants. The influence of soil type and plant species. Plant Soil 31:287–298

    Article  CAS  Google Scholar 

  • Bitterli C, Bañuelos GS, Schulin R (2010) Use of transfer factors to characterize uptake of selenium by plants. J Geochem Explor 107:206–216

    Article  CAS  Google Scholar 

  • Broadley MR et al. (2006) Biofortification of UK food crops with selenium. P Nutr Soc 65:169–181

    Article  CAS  Google Scholar 

  • Broadley MR, Alcock J, Alford J, et al. (2010) Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 332:5–18

    Article  CAS  Google Scholar 

  • Carvalho SMP, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54:961–971

    Article  CAS  Google Scholar 

  • Chasteen TG (1998) Volatile chemical species of selenium. In: Frankenberger WT, Engberg R (eds) Selenium in the environment. Marcel Dekker Inc, New York, pp. 589–612

    Google Scholar 

  • Christophersen OA, Lyons G, Haug A, Steinnes E (2012) Chapter 16: Selenium In BJ Alloway (ed.) Heavy metals in soils: trace elements and metalloids in soils and their bioavailability. Third edition. Environmental Pollution 22. Dordrecht: Springer

  • Combs GF (2001) Global importance of selenium and its relation to human health Impacts of agriculture on human health and nutrition, 20 pp

  • Culleton N et al. (1997) Selenium supplementation for dairy cows. Irish J Agr Food Res 36:23–29

    CAS  Google Scholar 

  • Davies EB, Watkinson JH (1966) Uptake of native and applied selenium by pasture species. New Zeal J Agr Res 9:317–327

    Article  CAS  Google Scholar 

  • De Haes HAU et al. (2012) Scarcity of micronutrients in soil, feed, food, and mineral reserves Urgency and policy options. Report and advisory memorandum for the Dutch minister of agriculture and foreign trade, 47 pp

  • Dhillon SK, Dhillon KS (2000) Selenium adsorption in soils as influenced by different anions. J Plant Nutr Soil Sci 163:577–582

    Article  CAS  Google Scholar 

  • Dungan RS, Frankenberger WT (1999) Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremed J 3:171–188

    Article  CAS  Google Scholar 

  • Eich-Greatorex S, Sogn TA, Øgaard AF, Aasen I (2007) Plant availability of inorganic and organic selenium fertiliser as influenced by soil organic matter content and pH. Nutr Cycl Agroecosys 79:221–231

    Article  CAS  Google Scholar 

  • Ekholm P, Ylinen M, Koivistoinen P, Varo P (1995) Selenium concentration of Finnish foods: effects of reducing amount of selenate in fertilizers. Agric Sci Finl 4:377–384

    Google Scholar 

  • Eurola M, Hietaniemi V (2004) Proceedings twenty years of selenium fertilization, September 8–9, 2005, Helsinki, Finland. Agrifood Research Reports 69, 108 pp

  • Eurola M, Ekholm P, Ylinen M, Koivistoinen P, Varo P (1991) Selenium in Finnish foods after beginning the use of selenate-supplemented fertilisers. J Sci Food Agr 56:57–70

    Article  CAS  Google Scholar 

  • Gissel-Nielsen G (1971) Influence of pH and texture of the soil on plant uptake of added selenium. J Agr Food Chem 19:1165–1167

    Article  CAS  Google Scholar 

  • Gissel-Nielsen G (1973) Uptake and distribution of added selenite and selenate by barley and red clover as influenced by sulphur. J Sci Food Agr 24:649–655

    Article  CAS  Google Scholar 

  • Gissel-Nielsen G (1998) Effects of selenium supplementation on field crops. In: Frankenberger Jr WT, Engberg RA (eds) Environmental chemistry of selenium. Marcel Dekker, New York, USA, pp. 99–128

  • Gissel-Nielsen G, Bisbjerg B (1970) The uptake of applied selenium by agricultural plants. The utilization of various selenium compounds. Plant Soil 32:382–396

    Article  CAS  Google Scholar 

  • Gissel-Nielsen G, Gupta UC, Lamand M, Westermarck T (1984) Selenium in soils and plants and its importance in livestock and human nutrition. Adv Agron 37:397–460

    Article  CAS  Google Scholar 

  • Gleser LJ, Olkin I (2009) Stochastically dependent effect sizes. In: Cooper H, Hedges LV, Valentine JC (eds) The handbook of research synthesis and meta-analysis. Russell Sage Foundation, New York, pp. 357–376

    Google Scholar 

  • Gupta UC (1995) Effects of Selcote® ultra and sodium selenate (laboratory versus commercial grade) on selenium concentration in feed crops. J Plant Nutr 18:1629–1636

    Article  CAS  Google Scholar 

  • Gupta UC, Gupta SC (2000) Selenium in soils and crops, its deficiencies in livestock and humans: implications for management. Commun Soil Sci Plan 31:1791–1807

    Article  CAS  Google Scholar 

  • Gupta UC, Winter KA (1981) Long-term residual effects of applied selenium on the selenium uptake by plants. J Plant Nutr 3:493–502

    Article  CAS  Google Scholar 

  • Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analysis. Ecology 80:1150–1156

    Article  Google Scholar 

  • Gurevitch J, Hedges LV (2001) Meta-analysis: combining the results of independent experiments. In: Scheiner SM, Gurevitch J (eds) Design and Analysis of Ecological Experiments. Oxford University Press, Oxford, UK, pp. 347–369

    Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen H, Xue TL (1999) The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J Environ Qual 28:1372–1375

    Article  CAS  Google Scholar 

  • Haug A, Graham RD, Christophersen OA, Lyons GH (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health D 19:209–228

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Zhao F-J (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292

    Article  CAS  Google Scholar 

  • Haygarth PM (1994) Global importance and cycling of selenium. In: WT F, Benson S (eds) Selenium in the environment. Marcel Dekker Inc., Basel, pp. 1–27

    Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratio in experimental ecology. Ecology 1150-1156

  • Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulphate. Plant Soil 210:199–207

    Article  CAS  Google Scholar 

  • Johnsson L (1991) Selenium uptake by plants as a function of soil type, organic matter content and pH. Plant Soil 133:57–64

    Article  CAS  Google Scholar 

  • Keskinen R (2012) Selenium fertilization: plant uptake and residuals in soil. PhD thesis, Helsinki University, Finland, p. 47

    Google Scholar 

  • Keskinen R, Turakainen M, Hartikainen H (2010) Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant Soil 333:301–313

    Article  CAS  Google Scholar 

  • Kiely J, Crosse S (1984) The potential of hill land for dairying. 1. Hill land development. Hill land Symposium 1984, An Foras Taluntais, Dublin, 392–409

  • Kikkert J, Hale B, Berkelaar E (2013) Selenium accumulation in durum wheat and spring canola as a function of amending soils with selenite, selenate and or sulphate. Plant Soil 372:629–641

    Article  CAS  Google Scholar 

  • Lee S, Woodard HJ, Doolittle JJ (2011) Selenium uptake response among selected wheat (Triticum aestivum) varieties and relationship with soil selenium fractions. Soil Sci Plant Nutr 57:823–832

    Article  CAS  Google Scholar 

  • Longchamp M, Angeli N, Castrec-Rouelle M (2012) Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 362:107–117

    Article  Google Scholar 

  • Lyons G (2010) Selenium in cereals: improving the efficiency of agronomic biofortification in the UK. Plant Soil 332:1–4

    Article  CAS  Google Scholar 

  • Lyons G, Stangoulis J, Graham R (2003) High-selenium wheat: biofortification for better health. Nutr Res Rev 16:45–60

    Article  CAS  PubMed  Google Scholar 

  • Lyons GH, Lewis J, Lorimer MF, et al. (2004a) High-selenium wheat: agronomic biofortification strategies to improve human nutrition. J Food Agric Environ 2:171–178

    Google Scholar 

  • Lyons GH, Stangoulis JCR, Graham RD (2004b) Exploiting micronutrient interaction to optimize biofortification programs: The case for inclusion of selenium and iodine in the Harvest-Plus program. Nutr Rev 62:247–252

    Article  PubMed  Google Scholar 

  • Lyons GH, Judson GJ, Ortiz-Monasterio I, et al. (2005a) Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 19:75–82

    Article  CAS  PubMed  Google Scholar 

  • Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005b) Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant Soil 269:269–380

    Article  Google Scholar 

  • Mäkelä A, Wan Wang WC, Hamalainen M, et al. (1995) Environmental effects of nationwide selenium fertilization in Finland. Biol Trace Elem Res 47:289–298

    Article  PubMed  Google Scholar 

  • Mikkelsen RL, Wan HF (1990) The effect of selenium on sulfur uptake by barley and rice. Plant Soil 121:151–153

    Article  CAS  Google Scholar 

  • Mikkelsen RL, Page AL, Haghnia GH (1988) Effect of salinity and its composition on the accumulation of selenium by alfalfa. Plant Soil 107:63–67

    Article  CAS  Google Scholar 

  • Mikkelsen RL, Page AL, Bingham FT (1989) Factors affecting selenium accumulation by agricultural crops. In: Segoe S (ed) Selenium in Agriculture and the Environment, SSSA 677, Special publication, vol 23, pp. 65–94

    Google Scholar 

  • Miller DD, Welch RM (2013) Food system strategies for preventing micronutrient malnutrition. Agricultural development economics division, food and agriculture organization of the United Nations, ESA working paper N0. 13–06., 34 pp.

  • Nakamaru Y, Tagami K, Uchida S (2006) Effect of phosphate addition on the sorption-desorption reaction of selenium in Japanese agricultural soils. Chemosphere 63:109–115

    Article  CAS  PubMed  Google Scholar 

  • Oldfield JE (2002) Selenium world atlas. Selenium-tellurium development Association (STDA), Grimbergen, p. 56 pp

    Google Scholar 

  • Rimmer DL, Shiel RS, Syers JK, Wilkinson M (1990) Effects of soil application of selenium on pasture composition. J. Sci. Food Agr. 51:407–410

    Article  CAS  Google Scholar 

  • Ros GH, Hoffland E, Van Kessel C, Temminghoff EJM (2009) Extractable and dissolved soil organic nitrogen – a quantitative assessment. Soil Biol Biochem 41:1029–1039

    Article  CAS  Google Scholar 

  • Ros GH, Temminghoff EJM, Hoffland E (2011) Nitrogen mineralization: a review and meta-analysis of the predictive value of soil tests. Eur J Soil Sci 62:162–173

    Article  CAS  Google Scholar 

  • Ros GH, Van Rotterdam AMD, Doppenberg GD, Bussink DW, Bindraban PS (2014) Se fertilization: an agro-ecosystem approach. VFRC Report 2014/2. Virtual Fertilizer Research Center, Washington, D.C, p. 62 pp

    Google Scholar 

  • Rosenberg MS, Adams DC, Gurevitch J (2000) METAWIN: Statistical Software for Meta-analysis, Version 2. Sinauer Associates, Sunderland, MA, USA

    Google Scholar 

  • Rosenthal R (1979) The "file drawer problem" and tolerance for null results. Psychol Bull 86:638–641

    Article  Google Scholar 

  • Severson RC, Gough LP (1992) Selenium and sulfur relationships in alfalfa and soil under field conditions, San Joaquin Valley, California. J Environ Qual 21:353–358

    Article  CAS  Google Scholar 

  • Shand C, Coutts G, Elizabeth D (1992) Soil selenium treatments to ameliorate selenium deficiency in herbage. J Sci Food Agr 59:27–35

    Article  CAS  Google Scholar 

  • Sharma S, Bansal A, Dhillon SK, Dhillon KS (2009) Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant Soil 329:339–348

    Article  Google Scholar 

  • Sillanpää M, Jansson H (1992) Status of cadmium, lead, cobalt and selenium in soils and plants of thirty countries. FAO Soils Bulletin 65, Rome, p. 191

    Google Scholar 

  • Spadoni M, Voltaggio M, Carcea M, et al. (2007) Bioaccessible selenium in Italian agricultural soils: Comparison of the biogeochemical approach with a regression model based on geochemical and pedoclimatic variables. Sci Total Environ 376:160–177

    Article  CAS  PubMed  Google Scholar 

  • Stavridou E, Young SD, Thorup-Kristensen K (2012) The effect of catch crop species on selenium availability for succeeding crops. Plant Soil 351:149–160

    Article  CAS  Google Scholar 

  • Stroud JL, Broadley MR, Foot I, et al. (2010a) Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil 332:19–30

    Article  CAS  Google Scholar 

  • Stroud JL, Li HF, Lopez-Bellido FJ, et al. (2010b) Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant Soil 332:31–40

    Article  CAS  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  PubMed  Google Scholar 

  • Turakainen M, Hartikainen H, Seppänen MM (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J Agr Food Chem 52:5378–5382

    Article  CAS  Google Scholar 

  • Tveitnes S, Singh BR, Ruud L (1996) Selenium concentration in spring wheat as influenced by basal application and top dressing of selenium-enriched fertilizers. Fert Res 45:163–167

    Article  Google Scholar 

  • USGS (2013) United States geological survey, mineral commodity summaries, selenium. available for several elements and years. Report available at http://minerals.usgs.gov/minerals/pubs/commodity/selenium/mcs-2013-selen.pdf

  • Van Hoewyk D, Takahashi H, Inoue E, HessA TM, Pilon-Smits EAH (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analysis in R with the metafor Package. J Stat Softw 36:1–48

    Article  Google Scholar 

  • Voortman RL (2012) Micronutrients in agriculture and the world food system. Centre for World Food Studies. VU University, Amsterdam

    Google Scholar 

  • Vuori E, Vääriskoski J, Hartikainen H, et al. (1994) A long-term study of selenate sorption in Finnish cultivated soils. Agr. Ecosyst Environ 48:91–98

    Article  CAS  Google Scholar 

  • Wang D, Alfthan G, Aro A, Mäkelä A, Knuuttila S, Hammar T (1995) The impact of selenium supplemented fertilization on selenium in lake ecosystems in Finland. Agric Ecosyst Environ 54:137–148

    Article  CAS  Google Scholar 

  • Watkinson JH (1983) Prevention of selenium deficiency in grazing animals by annual topdressing of pasture with sodium selenate. New Zeal Vet J 31:78–85

    Article  CAS  Google Scholar 

  • Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41:7151–7165

    Article  CAS  Google Scholar 

  • Weng L et al. (2011) Speciation of Se and DOC in soil solution and their relation to Se availability. Environ. Sci. Technol. 45:262–267

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phyt 182:49–84

    Article  CAS  Google Scholar 

  • Williams C, Thornton I (1972) The effect of soil additives on the uptake of molybdenum and selenium from soils from different environments. Plant Soil 36:395–406

    Article  CAS  Google Scholar 

  • Winkel LHE, Johnson CA, Lenz M, et al. (2012) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Techn 46:571–579

    Article  CAS  Google Scholar 

  • Xue TL, Hartikainen H (2000) Association of antioxidative enzymes with the synergistic effect of selenium and UV irradiation in enhancing plant growth. Agric Food Sci Finl 9:177–186

    CAS  Google Scholar 

  • Yläranta T (1985) Increasing the selenium content of cereal and grass crops in Finland. PhD thesis, University of Helsinki, Finland

    Google Scholar 

  • Yläranta T (1990) The selenium content of some agricultural crops and soils before and after the addition of selenium to fertilizers in Finland. Ann Agric Fenn 29:131–139

    Google Scholar 

  • Zhao C, Ren J, Xue C, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206

    Article  CAS  Google Scholar 

  • Zhao F-J, Lopez-Bellido FJ, Gray CW, et al. (2007) Effects of soil compaction and irrigation on the concentrations of selenium and arsenic in wheat grains. Sci Total Environ 372:433–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

G.H.R. was financially supported by the Nutrient Management Institute and by the Virtual Fertilizer Research Center (a grant, approved 12 November 2013). A preliminary meta-analysis (only main-factor analysis) of the same dataset has been published in VFRC report 2014/2 (Ros et al. 2014) within the framework of fortification strategies and requirements for broadly applicable decision support tools. We greatly thank Dr. H. Lambers and four anonymous reviewers for their comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Ros.

Ethics declarations

Funding

This study was funded by the institutes from the involved authors: the Nutrient Management Institute in the Netherlands and a grant from the Virtual Fertilizer Research Center (approved 12 November 2013).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

ESM 1

(DOCX 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ros, G.H., van Rotterdam, A.M.D., Bussink, D.W. et al. Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil 404, 99–112 (2016). https://doi.org/10.1007/s11104-016-2830-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2830-4

Keywords

Navigation