Skip to main content
Log in

G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Heterotrimeric G-proteins are implicated in several plant processes, but the mechanisms of signal-response coupling and the roles of G-protein coupled receptors in general and GCR1 in particular, remain poorly understood. We isolated a knock-out mutant of the Arabidopsis G-protein α subunit (gpa1-5) and analysed its transcriptome to understand the genomewide role of GPA1 and compared it with that of our similar analysis of a GCR1 mutant (Chakraborty et al. 2015, PLoS ONE 10(2):e0117819). We found 394 GPA1-regulated genes spanning 79 biological processes, including biotic and abiotic stresses, development, flavonoid biosynthesis, transcription factors, transporters and nitrate/phosphate responses. Many of them are either unknown or unclaimed explicitly in other published gpa1 mutant transcriptome analyses. A comparison of all known GPA1-regulated genes (including the above 394) with 350 GCR1-regulated genes revealed 114 common genes. This can be best explained by GCR1–GPA1 coupling, or by convergence of their independent signaling pathways. Though the common genes in our GPA1 and GCR1 mutant datasets constitute only 26 % of the GPA1-regulated and 30 % of the GCR1-responsive genes, they belong to nearly half of all the processes affected in both the mutants. Thus, GCR1 and GPA1 regulate not only some common genes, but also different genes belonging to the same processes to achieve similar outcomes. Overall, we validate some known and report many hitherto unknown roles of GPA1 in plants, including agronomically important ones such as biotic stress and nutrient response, and also provide compelling genetic evidence to revisit the role of GCR1 in G-protein signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

GPA1:

G-protein α subunit

GCR1:

G-protein coupled receptor

GEO:

Gene expression omnibus

GO:

Gene ontology

SEA:

Singular enrichment analysis

References

  • Ali A, Sivakami S, Raghuram N (2007) Regulation of activity and transcript levels of NR in rice (Oryza sativa): roles of protein kinase and G-proteins. Plant Sci 172:406–413

    Article  CAS  Google Scholar 

  • Bisht NC, Jez JM, Pandey S (2011) An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks. New Phytol 190:35–48

    Article  CAS  PubMed  Google Scholar 

  • Booker F, Burkey K, Morgan P, Fiscus E, Jones A (2012) Minimal influence of G-protein null mutations on ozone-induced changes in gene expression, foliar injury, gas exchange and peroxidase activity in Arabidopsis thaliana L. Plant, Cell Environ 35:668–681

    Article  CAS  Google Scholar 

  • Chakraborty N, Sharma P, Kanyuka K, Pathak R, Choudhury D, Hooley R, Raghuram N (2015) Transcriptome analysis of Arabidopsis GCR1 mutant reveals its roles in stress, hormones, secondary metabolism and phosphate starvation. PLoS ONE 10:e0117819

    Article  PubMed Central  PubMed  Google Scholar 

  • Chakravorty D, Trusov Y, Zhang W, Acharya BR, Sheahan MB, McCurdy DW, Assmann SM, Botella JR (2011) An atypical heterotrimeric G-protein gamma-subunit is involved in guard cell K(+)-channel regulation and morphological development in Arabidopsis thaliana. Plant J 67:840–851

    Article  CAS  PubMed  Google Scholar 

  • Chakravorty D, Gookin TE, Milner M, Yu Y, Assmann SM (2015) Extra-large G proteins (XLGs) expand the repertoire of subunits in Arabidopsis heterotrimeric G protein signaling. Plant Physiol. doi:10.1104/pp.15.00251

    PubMed Central  PubMed  Google Scholar 

  • Chen JG, Pandey S, Huang J, Alonso JM, Ecker JR, Assmann SM, Jones AM (2004) GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol 135:907–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen JG, Gao Y, Jones AM (2006) Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol 141:887–897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colaneri AC, Tunc-Ozdemir M, Huang JP, Jones AM (2014) Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. BMC Plant Biol 14:129

    Article  PubMed Central  PubMed  Google Scholar 

  • Coursol S, Fan L-M, Stunff HL, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651–654

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Cerezo M, Sanchez-Rodriguez C, Escudero V, Miedes E, Fernandez PV, Jorda L, Hernandez-Blanco C, Sanchez-Vallet A, Bednarek P, Schulze-Lefert P, Somerville S, Estevez JM, Persson S, Molina A (2012) Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi. Mol Plant 5:98–114

    Article  CAS  PubMed  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding L, Pandey S, Assmann SM (2008) Arabidopsis extra-large G proteins (XLGs) regulate root morphogenesis. Plant J 53:248–263

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Feng H, Xu M, Lee J, Kim YK, Lim YP, Piao Z, Park YD, Ma H, Hur Y (2013) Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip. PLoS ONE 8:e72178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Sun X, Wang G, Liu H, Zhu J (2012) LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana. Ann Bot 110:1–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forde BG (2014) Nitrogen signalling pathways shaping root system architecture: an update. Curr Opin Plant Biol 21:30–36

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y (1999) Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci USA 96:7575–7580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Taylor JP, Chen JG, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–1238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikawa A (2009) The Arabidopsis G-protein β-subunit is required for defense response against Agrobacterium tumefaciens. Biosci Biotechnol Biochem 73:47–52

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Wang RS, Zhu M, Jeon BW, Albert R, Chen S, Assmann SM (2013) Abscisic acid-responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants. Plant Cell 25:4789–4811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones AM, Ecker JR, Chen JG (2003) A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol 131:1623–1627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klopffleisch K, Phan N, Augustin K, Bayne RS, Booker KS, Botella JR, Carpita NC, Carr T, Chen J-G, Cooke TR, Frick-Cheng A, Friedman EJ, Fulk B, Hahn MG, Jiang K, Jorda L, Kruppe L, Liu C, Lorek J, McCann MC, Molina A, Moriyama EN, Mukhtar MS, Mudgil Y, Pattathil S, Schwarz J, Seta S, Tan M, Temp U, Trusov Y, Urano D, Welter B, Yang J, Panstruga R, Uhrig JF, Jones AM (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7(1):532

    Article  PubMed Central  PubMed  Google Scholar 

  • Koepp D, Choudhury SR, Bisht NC, Thompson R, Todorov O, Pandey S (2011) Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean. PLoS ONE 6:e23361

    Article  Google Scholar 

  • Komatsu S, Yang G, Hayashi N, Kaku H, Umemura K, Iwasaki Y (2004) Alterations by a defect in a rice G protein a subunit in probenazole and pathogen-induced responses. Plant, Cell Environ 27:947–957

    Article  CAS  Google Scholar 

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2011) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210

    Article  PubMed Central  PubMed  Google Scholar 

  • Lease KA, Wen J, Li J, Doke JT, Liscum E, Walker JC (2001) A mutant Arabidopsis heterotrimeric G-protein β subunit affects leaf, flower, and fruit development. Plant Cell 13:2631–2641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee Y-RJ, Assmann SM (1999) Arabidopsis thaliana ‘extra-large GTP-binding protein’ (AtXLG1): a new class of G-protein. Plant Mol Biol 40:55–64

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu Y, Zheng L, Chen L, Li N, Corke F, Lu Y, Fu X, Zhu Z, Bevan MW, Li Y (2012) The plant-specific G protein gamma subunit AGG3 influences organ size and shape in Arabidopsis thaliana. New Phytol 194:690–703

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ding P, Sun T, Nitta Y, Dong O, Huang X, Yang W, Li X, Botella JR, Zhang Y (2013) Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases. Plant Physiol 161:2146–2158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Llorente F, Alonso-Blanco C, Sánchez-Rodriguez C, Jorda L, Molina A (2005) ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J 43:165–180

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Arredondo DL, Leyva-Gonzalez MA, Gonzalez-Morales SI, Lopez-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio J, Cruz-Ramı́rez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1990) Molecular cloning and characterization of GPAI, a G protein a subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci USA 87:3821–3825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maruta N, Trusov Y, Brenya E, Parekh U, Botella JR (2015) Membrane-localized extra-large G proteins and Gbg of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol 167:1004–1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mason MG, Botella JR (2000) Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein g-subunit cDNA. Proc Natl Acad Sci USA 97:14784–14788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mason MG, Botella JR (2001) Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with Gβ. Biochim Biophys Acta 1520:147–153

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitta Y, Ding P, Zhang Y (2014) Heterotrimeric G proteins in plant defense against pathogens and aba signaling. Environ Exp Bot 114:153–158

    Article  Google Scholar 

  • Okamoto H, Gobel C, Capper RG, Saunders N, Feussner I, Knight MR (2009) The a-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana. J Exp Bot 60:1991–2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oki K, Fujisawa Y, Kato H, Iwasaki Y (2005) Study of the constitutively active form of the alpha subunit of rice heterotrimeric G proteins. Plant Cell Physiol 46:381–386

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Chen JG, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol 141:243–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Wang R-S, Wilson L, Li S, Zhao Z, Gookin TE, Assmann SM, Albert R (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol Syst Biol 6(1):372

    PubMed Central  PubMed  Google Scholar 

  • Pant BD, Burgos A, Pant P, Cuadros-Inostroza AC, Willmitzer L, Scheible W-R (2015) The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. J Exp Bot 66(7):1907–1918

    Article  PubMed Central  PubMed  Google Scholar 

  • Pathak RR, Lochab S (2010) A method for rapid isolation of total RNA of high purity and yield from Arthrospira platensis. Can J Microbiol 56:578–584

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Raghuram N, Chandok MR, Sopory SK (1999) Light regulation of nitrate reductase gene expression in maize involves a G-protein. Mol Cell Biol Res Commun 2:86–90

    Article  CAS  PubMed  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  CAS  PubMed  Google Scholar 

  • Suharsono U (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci 99:13307–13312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652–656

    Article  CAS  PubMed  Google Scholar 

  • Sussman MR, Amasino RM, Young JC, Krysan PJ, Austin-Phillips S (2000) The Arabidopsis Knockout Facility at the University of Wisconsin-Madison. Plant Physiol 124:1465–1467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taddese B, Upton GJ, Bailey GR, Jordan SR, Abdulla NY, Reeves PJ, Reynolds CA (2014) Do plants contain g protein-coupled receptors? Plant Physiol 164:287–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Temple BRS, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249–266

    Article  CAS  PubMed  Google Scholar 

  • Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM (2006) Botella JRn: heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 140:210–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trusov Y, Jordá L, Molina A, Botella J (2010) G proteins and plant innate immunity. In: Yalovsky S, Baluška F, Jones A (eds) Integrated G proteins signaling in plants. Springer, Berlin, pp 221–250

    Chapter  Google Scholar 

  • Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA 97:11638–11643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001) Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292:2066–2069

    Article  CAS  PubMed  Google Scholar 

  • Ullah H, Chen J-G, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003) The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15:393–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urano D, Jones AM (2013) “Round Up the Usual Suspects”: a comment on nonexistent plant G protein-coupled receptors. Plant Physiol 161:1097–1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urano D, Chen JG, Botella JR, Jones AM (2013) Heterotrimeric G protein signalling in the plant kingdom. Open Biol 3:120186

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    Article  CAS  PubMed  Google Scholar 

  • Warpeha KM, Lateef SS, Lapik Y, Anderson M, Lee BS, Kaufman LS (2006) G-protein-coupled receptor 1, G-protein G-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. Plant Physiol 140:844–855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, Anderson MB, Kaufman LS (2007) The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol 143:1590–1600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiss CA, Garnaat CW, Mukai K, Hu Y, Ma H (1994) Isolation of cDNAs encoding guanine nucleotide-binding protein b-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc Natl Acad Sci USA 91:9554–9558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu K, Guo Z, Wang H, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12:9–26

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Xu X, Li S, Liu T, Ma L, Shang Z (2007) Heterotrimeric G-protein participation in Arabidopsis pollen germination through modulation of a plasmamembrane hyperpolarization-activated Ca2+-permeable channel. New Phytol 176:550–559

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hu G, Cheng Y, Huang J (2008) Heterotrimeric G protein alpha and beta subunits antagonistically modulate stomatal density in Arabidopsis thaliana. Dev Biol 324:68–75

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2010) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grant to NR [60(0056)/02/EMRII and 38(1246)/10/EMRII] and research fellowships to NC (09/806(015)/2008-EMR1) and PS (60(0056)/02/EMRII) from the Council of Scientific and Industrial Research (CSIR), Government of India. This paper is dedicated to the co-author Priyanka Sharma who is no more.

Author contributions

NC performed the phenotypic analysis of the mutant, microarray and RT-qPCR experiments, analyzed the data and wrote the initial draft of the manuscript; RRP, PS and NR conceptualized the project; KK generated the mutants; DC provided initial training for data analysis to RRP and PS; NR assisted NC in finalizing the manuscript; NR and RH supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandula Raghuram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Data Access: GEO accession number GSE 40217 (GSM 988507, GSM 988508, GSM988505 and GSM988506).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Supplementary material 2 (TIFF 2028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, N., Sharma, P., Kanyuka, K. et al. G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana . Plant Mol Biol 89, 559–576 (2015). https://doi.org/10.1007/s11103-015-0374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0374-2

Keywords

Navigation