Skip to main content
Log in

Connected populations for detecting quantitative resistance factors to phoma stem canker in oilseed rape (Brassica napus L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Improvement of effectiveness and durability of disease resistance in crops most often relies on the use of quantitative resistance, with the hypothesis that a wide range of quantitative resistance factors (QTL) makes the overcoming of the resistance by the pathogen more difficult. For an optimum use of these QTL in effective and durable strategies of resistance deployment, there is a need to precisely know their localization but also their stability/specificity and their allelic effects in various genetic backgrounds. Stem canker caused by the fungus Leptosphaeria maculans is one of the most important diseases in oilseed rape. In this Brassica napus- L. maculans pathosystem, QTL were previously identified by linkage analysis using populations derived from biparental crosses that were analyzed separately. In this study, we explored new quantitative resistance factors using a multi-cross connected design derived from four resistant lines crossed with a single susceptible line. Independent and connected mapping analyses revealed to be complementary to get an overview of QTL organization. We validated different QTL across different years and genetic backgrounds and identified novel QTL which had not yet been mapped. Population-common and population-specific QTL were identified. Knowledge of QTL organization and effects should help in the rational choice of relevant factors in breeding resistant genotypes to be integrated with other control means such as cultural practices and rotations for durable management of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Aubertot JN, Schott JJ, Penaud A, Brun H, Dore T (2004) Methods for sampling and assessment in relation to the spatial pattern of phoma stem canker (Leptosphaeria maculans) in oilseed rape. Eur J Plant Pathol 110:183–192

    Article  Google Scholar 

  • Balesdent MH, Louvard K, Pinochet X, Rouxel T (2006) A large-scale survey of races of Leptosphaeria maculans occurring on oilseed rape in France. Eur J Plant Pathol 114:53–65

    Article  Google Scholar 

  • Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chèvre AM, Leflon M, Rouxel T (2013) The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol 198:887–898

  • Barchi L, Lefebvre V, Sage-Palloix AM, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171

    Article  CAS  PubMed  Google Scholar 

  • Billotte N, Jourjon MF, Marseillac N, Berger A, Flori A, Asmady H, Adon B, Singh R, Nouy B, Potier F, Cheah SC, Rohde W, Ritter E, Courtois B, Charrier A, Mangin B (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120:1673–1687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Charcosset A, Veyrieras JB, Gallais A, Moreau L (2008) Marker-assisted selection efficiency in multiple connected populations: a simulation study based on the results of a QTL detection experiment in maize. Euphytica 161:71–84

    Article  Google Scholar 

  • Boyd LA (2006) Can the durability of resistance be predicted? J Sci Food Agric 86:2523–2526

    Article  CAS  Google Scholar 

  • Brun H, Levivier S, Somda I, Ruer D, Renard M, Chevre AM (2000) A field method for evaluating the potential durability of new resistance sources: application to the Leptosphaeria maculans Brassica napus pathosystem. Phytopathol 90:961–966

    Article  CAS  Google Scholar 

  • Brun H, Chèvre A-M, Fitt BDL, Powers S, Besnard A-L, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185:285–299

    Article  PubMed  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang HB, Wang XX, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHC, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang XX, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang XX, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 354:950–953

    Article  Google Scholar 

  • Charcosset A, Mangin B, Moreau L, Combes L, Jourjon MF, Gallais A (2001) Heterosis in maize investigated using connected RIL populations. Quant Genet Breed Methods Way Ahead 96:89–98

    Google Scholar 

  • Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Christiansen MJ, Feenstra B, Skovgaard IM, Andersen SB (2006) Genetic analysis of resistance to yellow rust in hexaploid wheat using a mixture model for multiple crosses. Theor Appl Genet 112:581–591

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cuesta-Marcos A, Casas AM, Yahiaoui S, Gracia MP, Lasa JM, Igartua E (2008) Joint analysis for heading date QTL in small interconnected barley populations. Mol Breed 21:383–399

    Article  Google Scholar 

  • Danan S (2009) Diversité structurale des locus de résistance à Phytophthora infestans chez la pomme de terre et synténie chez les Solanacées. Thesis. INRA-Génétique et amélioration des plantes. Ecole doctorale Systèmes intégrés en Biologie, Agronomie, Géosciences, Hydrosciences, Environnement, Montpellier, p 230

  • Delourme R, Pilet-Nayel ML, Archipiano M, Horvais R, Tanguy X, Rouxel T, Brun H, Renard A, Balesdent AH (2004) A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology 94:578–583

    Article  CAS  PubMed  Google Scholar 

  • Delourme R, Chèvre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, Rimmer SR (2006a) Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). Eur J Plant Pathol 114:41–52

    Article  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006b) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345

    Article  CAS  PubMed  Google Scholar 

  • Delourme R, Piel N, Horvais R, Pouilly N, Domin C, Vallee P, Falentin C, Manzanares-Dauleux MJ, Renard M (2008) Molecular and phenotypic characterization of near isogenic lines at QTL for quantitative resistance to Leptosphaeria maculans in oilseed rape (Brassica napus L.). Theor Appl Genet 117:1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Delourme R, Bousset L, Ermel M, Duffé P, Besnard AL, Marquer B, Fudal Linglin J, Chadoeuf J, Brun H (2014) Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape. Infect Genet Evol 27:490–499

    Article  CAS  PubMed  Google Scholar 

  • Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Evans N, Baierl A, Semenov MA, Gladders P, Fitt BDL (2008) Range and severity of a plant disease increased by global warming. J R Soc Interface 5:525–531

    Article  PubMed Central  PubMed  Google Scholar 

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) World-wide importance of phoma stem canker (Leptosphaeria maculans and L.biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15

    Article  Google Scholar 

  • Fitt BDL, Hu BC, Li ZQ, Liu SY, Lange RM, Kharbanda PD, Butterworth MH, White RP (2008) Strategies to prevent spread of Leptosphaeria maculans (phoma stem canker) onto oilseed rape crops in China; costs and benefits. Plant Pathol 57:652–664

    Article  Google Scholar 

  • Fopa Fomeju B, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R (2014) Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker. BMC Genomic 15:498

    Article  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Hayward A, McLanders J, Campbell E, Edwards D, Batley J (2012) Genomic advances will herald new insights into the Brassica: Leptosphaeria maculans pathosystem. Plant Biol 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Iniguez-Luy F, Voort A, Osborn T (2008) Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977–985

    Article  CAS  PubMed  Google Scholar 

  • Jestin C, Lodé M, Domin C, Falentin C, Horvais R, Coedel S, Manzanares-Dauleux MJ, Delourme R (2011) Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed 27:190–201

    Article  Google Scholar 

  • Jestin C, Vallée P, Domin C, Manzanares-Dauleux MJ, Delourme R (2012) Assessment of a new strategy for selective phenotyping applied to complex traits in Brassica napus. Open J Genet 2:190–201

    Article  CAS  Google Scholar 

  • Jourjon M-F, Jasson S, Marcel J, Ngom B, Mangin B (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21:128–130

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Cogan N, Ye G, Baillie R, Hand M, Ling A, McGearey A, Kaur J, Hopkins C, Todorovic M, Mountford H, Edwards D, Batley J, Burton W, Salisbury P, Gororo N, Marcroft S, Kearney G, Smith K, Forster J, Spangenberg G (2009) Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theor Appl Genet 120:71–83

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Choi S, Bae J, Hong C, Lee S, Hossain MJ, Van Dan N, Jin M, Park B, Bang J, Bancroft I, Lim Y (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genom 10:15

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larièpe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012) The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190:795–811

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee S, Rouf Mian MA, Sneller CH, Wang H, Dorrance AE, McHale LK (2014) Joint linkage QTL analyses for partial resistance to Phytophthora soja in soybean using six nested inbred populations with heterogeneous conditions. Theor Appl Genet 127:429–444

    Article  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li H, Sivasithamparam K, Barbetti MJ (2003) Breakdown of a Brassica rapa subsp sylvestris single dominant blackleg resistance gene in B. napus rapeseed by Leptosphaeria maculans field isolates in Australia. Plant Dis 87:752

    Article  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic linkage maps with Mapmaker/Exp 3.0: a tutorial and reference manual. Whitehead Institute technical report 3rd edn

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Mapping QTLs: inbred line crosses—precision of ML estimates of QTL position. In: Associates Sinauer (ed) Genetics and analysis of quantitative traits. Sinauer, Sunderland, pp 448–450

    Google Scholar 

  • Negeri AT, Coles ND, Holland JB, Balint-Kurti PJ (2011) Mapping QTL controlling southern leaf blight resistance by joint analysis of three related recombinant inbred line populations. Crop Sci 51:1571–1579

    Article  Google Scholar 

  • Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199

    Article  CAS  PubMed  Google Scholar 

  • Paulo MJ, Boer M, Huang XQ, Koornneef M, van Eeuwijk F (2008) A mixed model QTL analysis for a complex cross population consisting of a half diallel of two-way hybrids in Arabidopsis thaliana: analysis of simulated data. Euphytica 161:107–114

    Article  Google Scholar 

  • Pauly L, Flajoulot S, Garon J, Julier B, Béguier V, Barre P (2012) Detection of favorable alleles for plant height and crown rust tolerance in three connected populations of perennial ryegrass (Lolium perenne L.). Theor Appl Genet 124:1139–1153

    Article  PubMed  Google Scholar 

  • Pierre JB, Huguet T, Barre P, Huyghe C, Julier B (2008) Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula. Theor Appl Genet 117:609–620

    Article  CAS  PubMed  Google Scholar 

  • Pilet ML, Delourme R, Foisset N, Renard M (1998) Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in Winter rapeseed (Brassica napus L.). Theor Appl Genet 96:23–30

    Article  Google Scholar 

  • Pilet ML, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas M, Renard M, Delourme R (2001) Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci 41:197–205

    Article  CAS  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Quenouille J, Montarry J, Palloix A, Moury B (2013) Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown. Mol Plant Pathol 14:109–118

    Article  CAS  PubMed  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raman R, Taylor B, Marcroft S, Stiller J, Eckermann P, Coombes N, Rehman A, Lindbeck K, Luckett D, Wratten N, Batley J, Edwards D, Wang X, Raman H (2012) Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theor Appl Genet 125:405–418

    Article  CAS  PubMed  Google Scholar 

  • Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Rimmer SR (2006) Resistance genes to Leptosphaeria maculans in Brassica napus. Can J Plant Pathol-Revue Canadienne de Phytopathologie 28:S288–S297

    Article  CAS  Google Scholar 

  • Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourme R, Schmit J, Balesdent MH (2003) A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. Eur J Plant Pathol 109:871–881

    Article  CAS  Google Scholar 

  • Rowe HC, Hansen BG, Halkier BA, Kliebenstein DJ (2008) Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Am Soc Plant Biol 20:1199–1216

    CAS  Google Scholar 

  • Roy NN, Fisher HM, Tarr A (1983) Wesbrook—a new prime variety of rapeseed. In: Proceedings fourth Australian rapeseed agronomists and breeders workshop, Lyndoch, 4 pp

  • SAS II (1989) SAS/STAT users guide, version 6.0, 4th edn. SAS institute Inc, Cary

  • Schwegler DD, Liu W, Gowda M, Würschum T, Schulz B, Reif JC (2013) Multiple-line cross quantitative trait locus mapping in sugar beet (Beta vulgaris L.). Theor Appl Genet 31:279–287

    CAS  Google Scholar 

  • Steinhoff J, Liu W, Maurer HP, Würschum T, Longin H, Friedrich C, Ranc N, Reif JC (2011) Multiple-line cross quantitative trait locus mapping in European Elite maize. Crop Sci 51:2505–2516

    Article  Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker-facilitated investigations of quantitative trait loci in maize. 2. Factors influencing yield and its components traits. Crop Sci 27:639–648

    Article  Google Scholar 

  • Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty P, Li G (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114:1305–1317

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Morgan C, Bancroft I (2008) Integration of Brassica a genome genetic linkage map between Brassica napus and B. rapa. Genome 51:169–176

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Vanooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wang JW, Lydiat DJ, Parkin IAP, Falentin C, Delourme R, Carion PWC, King GJ (2011) Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genom 12:101

    Article  CAS  Google Scholar 

  • West JS, Kharbanda PD, Barbetti MJ, Fitt BDL (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol 50:10–27

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Institut National de la Recherche Agronomique—Department of ‘Biologie et Amélioration des Plantes’, CETIOM (Centre Technique Interprofessionnel des Oléagineux Métropolitains) and PROMOSOL. We thank the team of the INRA Experimental Unit (Le Rheu) for performing the disease evaluation trials. Genotyping was performed on Biogenouest® and Gentyane® platforms. We greatly acknowledge Cyril Falentin and Sylvie Nègre for their help in anchoring the markers on the B. napus reference sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Delourme.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2015_356_MOESM1_ESM.ppt

Supplementary material 1 Figure 1: Genetic maps from the AB (‘Aviso’ × ‘Bristol’), CB (‘Canberra’ × ‘Bristol’), DB (‘Darmor’ × ‘Bristol’) and GB (‘Grizzly’ × ‘Bristol’) populations, and the consensus genetic map derived from these populations. Common segregating loci between at least two populations are indicated in red in the independent populations and on the consensus map. (PPT 1447 kb)

11032_2015_356_MOESM2_ESM.ppt

Supplementary material 2 Figure 2: Linkage groups of the consensus map with the QTL of resistance to stem canker identified in the independent populations and the consensus population in 2008, 2009 and 2010 with QTLCartographer (filled rectangles) and MCQTL (hatched rectangles). Green, pink, brown and blue rectangles represent the QTL identified in the AB, CB, DB, GB independent populations, respectively, and red rectangles represent the QTL detected in the connected design. The QTL were named according to their location on each linkage group as in Delourme et al. (2008), the year and the population where they were detected i.e. QLmA9_2008_AB for QTL of resistance to L. maculans located on the linkage group A9 and detected in 2008 in the AB population. A ‘c’ or ‘m’ suffix was added if the QTL was detected with QTLCartographer or MCQTL, respectively. (PPT 182 kb)

Supplementary material 3 (DOCX 14 kb)

Supplementary material 4 (XLSX 23 kb)

Supplementary material 5 (DOCX 23 kb)

Supplementary material 6 (XLSX 38 kb)

Supplementary material 7 (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jestin, C., Bardol, N., Lodé, M. et al. Connected populations for detecting quantitative resistance factors to phoma stem canker in oilseed rape (Brassica napus L.). Mol Breeding 35, 167 (2015). https://doi.org/10.1007/s11032-015-0356-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0356-8

Keywords

Navigation