Skip to main content
Log in

Population pharmacokinetic analysis of rebamipide in healthy Korean subjects with the characterization of atypical complex absorption kinetics

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

In this study, the population pharmacokinetic (PK) analysis of rebamipide (Reba) in healthy male Korean subjects was analyzed using the nonlinear mixed effects modeling method. The possible effects of physiological covariates and the multidrug resistance (MDR1) gene 3435C>T polymorphism on PK parameters were also investigated. Data were collected from a bioequivalence study, in which 26 subjects who participated in the study were administered a single oral dose of 100 mg Reba; only data from the reference formulation were used. Reba showed a relatively large inter-individual variability (from 2.6- to 3.3-fold) in the PK parameters with double peaks or the concentration plateau after the peak concentration in its serum concentration–time profiles. The population PKs of Reba was best described by a one-compartment model with three fraction absorption processes followed a single Weibull-type function and two first-order kinetics, and lag times. The study suggests that the efflux transporter MDR1 3435C>T allele affects the substantial inter-individual variability in the absorption of Reba according to genetic polymorphism. A significant difference was found in the absorption rate ka 1 among the MDR1 3435C>T genotype groups (P < 0.05) (CT group, 79.8% increase; and TT group, 115% increase). The use of combined MDR1 3435C>T and body mass index as covariates for ka 1 exerted a more significant effect (P < 0.05). In addition, body surface area significantly affected the apparent total clearance (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yamasaki K, Ishiyama H, Imaizumi T, Kanbe T, Yabuuchi Y (1989) Effect of OPC-12759, a novel antiulcer agent, on chronic and acute experimental gastric ulcer, and gastric secretion in rats. Jpn J Pharmacol 49:441–448

    Article  CAS  PubMed  Google Scholar 

  2. Yamasaki K, Kanbe T, Chijiwa T, Ishiyama H, Morita S (1987) Gastric mucosal protection by OPC-12759, a novel antiulcer compound, in the rat. Eur J Pharmacol 142:23–29

    Article  CAS  PubMed  Google Scholar 

  3. Arakawa T, Kobayashi K, Yoshikawa T, Tarnawski A (1998) Rebamipide: overview of its mechanisms of action and efficacy in mucosal protection and ulcer healing. Dig Dis Sci 43:5S–13S

    CAS  PubMed  Google Scholar 

  4. Ishihara K, Komuro Y, Nishiyama N, Yamasaki K, Hotta K (1992) Effect of rebamipide on mucus secretion by endogenous prostaglandin-independent mechanism in rat gastric mucosa. Arzneimittelforschung 42:1462–1466

    CAS  PubMed  Google Scholar 

  5. Aihara M, Imagawa K, Funakoshi Y, Ohmoto Y, Kikuchi M (1998) Effects of rebamipide on production of several cytokines by human peripheral blood mononuclear cells. Dig Dis Sci 43:160S–166S

    CAS  PubMed  Google Scholar 

  6. Nagano C, Wakebe H, Azuma A, Imagawa K, Kikuchi M (1998) IFN-gamma-induced iNOS mRNA expression is inhibited by rebamipide in murine macrophage RAW264.7 cells. Dig Dis Sci 43:118S–124S

    CAS  PubMed  Google Scholar 

  7. Kim JS, Kim JM, Jung HC, Song IS (2001) Expression of cyclooxygenase-2 in human neutrophils activated by Helicobacter pylori water-soluble proteins: possible involvement of NF-kappaB and MAP kinase signaling pathway. Dig Dis Sci 46:2277–2284

    Article  CAS  PubMed  Google Scholar 

  8. Naito Y, Kuroda M, Mizushima K, Takagi T, Handa O, Kokura S, Yoshida N, Ichikawa H, Yoshikawa T (2007) Transcriptome analysis for cytoprotective actions of rebamipide against indomethacin-induced gastric mucosal injury in rats. J Clin Biochem Nutr 41:202–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ogino K, Hobara T, Ishiyama H, Yamasaki K, Kobayashi H, Izumi Y, Oka S (1992) Antiulcer mechanism of action of rebamipide, a novel antiulcer compound, on diethyldithiocarbamate-induced antral gastric ulcers in rats. Eur J Pharmacol 212:9–13

    Article  CAS  PubMed  Google Scholar 

  10. Sakurai K, Sasabe H, Koga T, Konishi T (2004) Mechanism of hydroxyl radical scavenging by rebamipide: identification of mono-hydroxylated rebamipide as a major reaction product. Free Radic Res 38:487–494

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki M, Miura S, Mori M, Kai A, Suzuki H, Fukumura D, Suematsu M, Tsuchiya M (1994) Rebamipide, a novel antiulcer agent, attenuates Helicobacter pylori induced gastric mucosal cell injury associated with neutrophil derived oxidants. Gut 35:1375–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshida N, Yoshikawa T, Iinuma S, Arai M, Takenaka S, Sakamoto K, Miyajima T, Nakamura Y, Yagi N, Naito Y, Mukai F, Kondo M (1996) Rebamipide protects against activation of neutrophils by Helicobacter pylori. Dig Dis Sci 41:1139–1144

    Article  CAS  PubMed  Google Scholar 

  13. Yoshikawa T, Naito Y, Tanigawa T, Kondo M (1993) Free radical scavenging activity of the novel anti-ulcer agent rebamipide studied by electron spin resonance. Arzneimittelforschung 43:363–366

    CAS  PubMed  Google Scholar 

  14. Shin BS, Kim CH, Jun YS, Yoon CH, Rho JI, Lee KC, Han HS, Yoo SD (2004) Oral absorption and pharmacokinetics of rebamipide and rebamipide lysinate in rats. Drug Dev Ind Pharm 30:869–876

    Article  CAS  PubMed  Google Scholar 

  15. Guo Y, Wang Y, Xu L (2015) Enhanced bioavailability of rebamipide nanocrystal tablets: formulation and in vitro/in vivo evaluation. Asian J Pharm Sci 10:223–229

    Article  Google Scholar 

  16. Pradhan R, Tran TH, Choi JY, Choi IS, Choi HG, Yong CS, Kim JO (2015) Development of a rebamipide solid dispersion system with improved dissolution and oral bioavailability. Arch Pharm Res 38:522–533

    Article  CAS  PubMed  Google Scholar 

  17. Tung NT, Park CW, Oh TO, Kim JY, Ha JM, Rhee YS, Park ES (2011) Formulation of solid dispersion of rebamipide evaluated in a rat model for improved bioavailability and efficacy. J Pharm Pharmacol 63:1539–1547

    Article  CAS  PubMed  Google Scholar 

  18. Huang BB, Li GF, Luo JH, Duan L, Nobuaki K, Akira Y (2008) Permeabilities of rebamipide via rat intestinal membranes and its colon specific delivery using chitosan capsule as a carrier. World J Gastroenterol 14:4928–4937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu J, Shen-Tu J, Wu L, Dou J, Xu Q, Zhou H, Wu G, Hu X (2012) Development of a simple LC-MS/MS method for determination of rebamipide in human plasma and its application to a bioequivalence study. Pharmazie 67:906–911

    CAS  PubMed  Google Scholar 

  20. Hasegawa S, Sekino HH, Matsuoka O, Saito K, Sekino HH, Morikawa A, Uchida K, Koike M, Azuma J (2003) Bioequivalence of rebamipide granules and tablets in healthy adult male volunteers. Clin Drug Investig 23:771–779

    Article  CAS  PubMed  Google Scholar 

  21. Cho HY, Yoon H, Park GK, Lee YB (2009) Pharmacokinetics and bioequivalence of two formulations of rebamipide 100-mg tablets: a randomized, single-dose, two-period, two-sequence crossover study in healthy Korean male volunteers. Clin Ther 31:2712–2721

    Article  CAS  PubMed  Google Scholar 

  22. Gerloff T (2004) Impact of genetic polymorphisms in transmembrane carrier-systems on drug and xenobiotic distribution. Naunyn Schmiedebergs Arch Pharmacol 369:69–77

    Article  CAS  PubMed  Google Scholar 

  23. Lown KS, Mayo RR, Leichtman AB, Hsiao HL, Turgeon DK, Schmiedlin-Ren P, Brown MB, Guo W, Rossi SJ, Benet LZ, Watkins PB (1997) Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 62:248–260

    Article  CAS  PubMed  Google Scholar 

  24. Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK, Borst P, Nooijen WJ, Beijnen JH, van Tellingen O (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 94:2031–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 97:3473–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brinkmann U, Roots I, Eichelbaum M (2001) Pharmacogenetics of the human drug-transporter gene MDR1: impact of polymorphisms on pharmacotherapy. Drug Discov Today 6:835–839

    Article  CAS  PubMed  Google Scholar 

  28. Pauli-Magnus C, Kroetz DL (2004) Functional implications of genetic polymorphisms in the multidrug resistance gene MDR1 (ABCB1). Pharm Res 21:904–913

    Article  CAS  PubMed  Google Scholar 

  29. Drescher S, Schaeffeler E, Hitzl M, Hofmann U, Schwab M, Brinkmann U, Eichelbaum M, Fromm MF (2002) MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol 53:526–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cascorbi I, Gerloff T, Johne A, Meisel C, Hoffmeyer S, Schwab M, Schaeffeler E, Eichelbaum M, Brinkmann U, Roots I (2001) Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 69:169–174

    Article  CAS  PubMed  Google Scholar 

  31. Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI, Taylor A, Xie HG, McKinsey J, Zhou S, Lan LB, Schuetz JD, Schuetz EG, Wilkinson GR (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 70:189–199

    Article  CAS  PubMed  Google Scholar 

  32. Van Asperen J, Van Tellingen O, Beijnen JH (1998) The pharmacological role of P-glycoprotein in the intestinal epithelium. Pharmacol Res 37:429–435

    Article  PubMed  Google Scholar 

  33. Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22:11–23

    Article  CAS  PubMed  Google Scholar 

  34. Akamatsu T, Nakamura N, Furuya N, Shimizu T, Gotou A, Kiyosawa K, Katsuyama T, Osumi T, Hirao Y, Miyamoto G (2002) Local gastric and serum concentrations of rebamipide following oral ingestion in healthy volunteers. Dig Dis Sci 47:1399–1404

    Article  CAS  PubMed  Google Scholar 

  35. Boeckmann AJ, Beal SL, Sheiner LB (1998) NONMEM User’s Guide, Part I. NONMEM Project Group, University of California at San Francisco, San Francisco, CA

  36. Mandema JW, Verotta D, Sheiner LB (1992) Building population pharmacokinetic-pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm 20:511–528

    Article  CAS  PubMed  Google Scholar 

  37. Davies NM, Takemoto JK, Brocks DR, Yanez JA (2010) Multiple peaking phenomena in pharmacokinetic disposition. Clin Pharmacokinet 49:351–377

    Article  CAS  PubMed  Google Scholar 

  38. Zhou H (2003) Pharmacokinetic strategies in deciphering atypical drug absorption profiles. J Clin Pharmacol 43:211–227

    Article  CAS  PubMed  Google Scholar 

  39. Bressolle F, Gomeni R, Alric R, Royer-Morrot MJ, Necciari J (1994) A double Weibull input function describes the complex absorption of sustained-release oral sodium valproate. J Pharm Sci 83:1461–1464

    Article  CAS  PubMed  Google Scholar 

  40. Murata K, Noda K, Kohno K, Samejima M (1987) Pharmacokinetic analysis of concentration data of drugs with irregular absorption profiles using multi-fraction absorption models. J Pharm Sci 76:109–113

    Article  CAS  PubMed  Google Scholar 

  41. Strandgården K, Höglund P, Grönquist L, Svensson L, Gunnarsson PO (2000) Absorption and disposition including enterohepatic circulation of (14C) roquinimex after oral administration to healthy volunteers. Biopharm Drug Dispos 21:53–67

    Article  PubMed  Google Scholar 

  42. Gibaldi M (1967) Pharmacokinetics of absorption and elimination of doxycycline in man. Chemotherapy 12:265–271

    Article  CAS  Google Scholar 

  43. Clements JA, Heading RC, Nimmo WS, Prescott LF (1978) Kinetics of acetaminophen absorption and gastric emptying in man. Clin Pharmacol Ther 24:420–431

    Article  CAS  PubMed  Google Scholar 

  44. Plusquellec Y, Houin G (1994) Pharmacokinetic compartmental model with n sites of absorption along the gastrointestinal tract. Arzneimittelforschung 44:679–682

    CAS  PubMed  Google Scholar 

  45. Williams MF, Dukes GE, Heizer W, Han YH, Hermann DJ, Lampkin T, Hak LJ (1992) Influence of gastrointestinal site of drug delivery on the absorption characteristics of ranitidine. Pharm Res 9:1190–1194

    Article  CAS  PubMed  Google Scholar 

  46. Siegmund W, Ludwig K, Engel G, Zschiesche M, Franke G, Hoffmann A, Terhaag B, Weitschies W (2003) Variability of intestinal expression of P-glycoprotein in healthy volunteers as described by absorption of talinolol from four bioequivalent tablets. J Pharm Sci 92:604–610. doi:10.1002/jps.10327

    Article  CAS  PubMed  Google Scholar 

  47. Jin SJ, Bae KS, Cho SH, Jung JA, Kim U, Choe S, Ghim JL, Noh YH, Park HJ, Kim HS, Lim HS (2014) Population pharmacokinetic analysis of simvastatin and its active metabolite with the characterization of atypical complex absorption kinetics. Pharm Res 31:1801–1812

    Article  CAS  PubMed  Google Scholar 

  48. Henn RM, Isenberg JI, Maxwell V, Sturdevant RAL (1975) Inhibition of gastric acid secretion by cimetidine in patients with duodenal ulcer. N Engl J Med 293:371–375

    Article  CAS  PubMed  Google Scholar 

  49. Yoo HD, Kim MS, Cho HY, Lee YB (2011) Population pharmacokinetic analysis of glimepiride with CYP2C9 genetic polymorphism in healthy Korean subjects. Eur J Clin Pharmacol 67:889–898

    Article  CAS  PubMed  Google Scholar 

  50. Rietbrock S, Merz PG, Fuhr U, Harder S, Marschner JP, Loew D, Biehl J (1995) Absorption behavior of sulpiride described using Weibull functions. Int J Clin Pharmacol Ther 33:299–303

    CAS  PubMed  Google Scholar 

  51. Lin JH, Lu AY (1997) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449

    CAS  PubMed  Google Scholar 

  52. Kerb R, Aynacioglu AS, Brockmöller J, Schlagenhaufer R, Bauer S, Szekeres T, Hamwi A, Fritzer-Szekeres M, Baumgartner C, Öngen HZ, Güzelbey P, Roots I, Brinkmann U (2001) The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for phenytoin plasma levels. Pharmacogenomics J 1:204–210

    Article  CAS  PubMed  Google Scholar 

  53. Fellay J, Marzolini C, Meaden ER, Back DJ, Buclin T, Chave J-P, Decosterd LA, Furrer H, Opravil M, Pantaleo G, Retelska D, Ruiz L, Schinkel AH, Vernazza P, Eap CB, Telenti A (2002) Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 359:30–36

    Article  CAS  PubMed  Google Scholar 

  54. Daly AK (2010) Pharmacogenetics and human genetic polymorphisms. Biochem J 429:435–449

    Article  CAS  PubMed  Google Scholar 

  55. Roden DM, George AL Jr (2002) The genetic basis of variability in drug responses. Nat Rev Drug Discov 1:37–44

    Article  CAS  PubMed  Google Scholar 

  56. Verstuyft C, Schwab M, Schaeffeler E, Kerb R, Brinkmann U, Jaillon P, Funck-Brentano C, Becquemont L (2003) Digoxin pharmacokinetics and MDR1 genetic polymorphisms. Eur J Clin Pharmacol 58:809–812

    Article  CAS  PubMed  Google Scholar 

  57. Fromm MF (2002) The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans. Adv Drug Deliv Rev 54:1295–1310

    Article  CAS  PubMed  Google Scholar 

  58. Cho HY, Yoo HD, Lee YB (2010) Influence of ABCB1 genetic polymorphisms on the pharmacokinetics of levosulpiride in healthy subjects. Neuroscience 169:378–387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2014R1A1A2056937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Bok Lee.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Appendix

Appendix

See Table 5.

Table 5 Extraction of the codes used in modeling drug absorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, L., Yoo, HD., Tran, P. et al. Population pharmacokinetic analysis of rebamipide in healthy Korean subjects with the characterization of atypical complex absorption kinetics. J Pharmacokinet Pharmacodyn 44, 291–303 (2017). https://doi.org/10.1007/s10928-017-9519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-017-9519-z

Keywords

Navigation