Skip to main content
Log in

Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites

  • Ultrafinegrained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reviews the growing body of work over the past decade investigating the effect of interface crystallographic character and resulting local interface structure on the mechanical behavior in bimetallic nanolayered composites. It has been shown that nanolayered composites exhibit enhanced strength, thermal stability, radiation damage tolerance, and resistance to shock deformation in comparison to their coarse-grained constituents. These unique behaviors are attributable to the high density of interfacial content, as well as the local interface structure and its influence on mechanically or irradiation-induced defects. Here, we cover recent literature on Cu–Nb nanolayered composites synthesized via different pathways including physical vapor deposition and severe plastic deformation techniques such as accumulative roll bonding. By altering the synthesis method, we can produce materials with similar chemical composition and layered morphology, while varying only the crystallographic character of the interface as defined by the orientation relationship and interface plane. This capability, in turn, opens an unprecedented opportunity for systematic investigation of the local interface structure on subsequent behavior, while keeping all other variables constant. We begin with a discussion of interface structures that develop as a function of their processing path. We then follow with the effects of interface structure on dislocation nucleation and deformation twinning. Next, we discuss interface effects on mechanical behavior at quasi-static ambient conditions and later under extreme strains, strain rates, and temperatures. Taken together, these examples provide a strong indication that interface structure matters. The exciting implication is that bimetal interfaces can potentially be engineered for optimal material performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Demkowicz MJ, Hoagland RG, Hirth JP (2008) Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys Rev Lett 100:136102–136104

    Article  Google Scholar 

  2. Demkowicz MJ, Bellon P, Wirth BD (2010) Atomic-scale design of radiation-tolerant nanocomposites. MRS Bull 35:992–998

    Article  Google Scholar 

  3. Zheng S, Beyerlein IJ, Carpenter JS et al (2013) High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun 4:1–8. doi:10.1038/ncomms2651

    Article  Google Scholar 

  4. Carpenter JS, Zheng SJ, Zhang RF, Vogel SC, Beyerlein IJ, Mara NA (2013) Thermal stability of Cu–Nb nanolamellar composites fabricated via accumulative roll bonding. Philos Mag 93:718–735. doi:10.1080/14786435.2012.731527

    Article  Google Scholar 

  5. Misra A, Hoagland RG, Kung H (2004) Thermal stability of self-supported nanolayered Cu/Nb films. Philos Mag 84:1021–1028

    Article  Google Scholar 

  6. Misra A, Hoagland RG (2005) Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J Mater Res 20:2046–2054

    Article  Google Scholar 

  7. Misra A, Hoagland RG (2004) Thermo-mechanical stability of metallic nanolaminates. JOM 56:140–141

    Google Scholar 

  8. Misra A, Hoagland RG (2014) Bimetallic layered nanocomposites. In: Lyshevski SE (ed) Dekker encyclopedia of nanoscience and nanotechnology, 3rd edn. CRC Press, New York, pp 262–270

  9. Misra A (2006) In: Hill AJ, Hannink RHJ (eds) Nanostructure control of materials, Woodhead Publishing Co., UK

  10. Mitlin D, Misra A, Mitchell TE, Hoagland RG, Hirth JP (2004) Influence of overlayer thickness on the density of Lomer dislocations in nanoscale Ni–Cu bilayer thin films. Appl Phys Lett 85:1686–1688

    Article  Google Scholar 

  11. Mitlin D, Misra A, Mitchell TE, Hirth JP, Hoagland RG (2005) Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films. Philos Mag 85:3379–3392

    Article  Google Scholar 

  12. Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824

    Article  Google Scholar 

  13. Hirth JP, Xiaoxin F (1990) Critical layer thickness for misfit dislocation stability in multilayer structures. J Appl Phys 67:3343–3349. doi:10.1063/1.345371

    Article  Google Scholar 

  14. Hirth JP, Hoagland RG, Misra A (2005) The effect of surface steps on the critical thickness for spreading of threading dislocations in thin epitaxial films. Philos Mag 85:3019–3028

    Article  Google Scholar 

  15. Misra A, Verdier M, Lu YC et al (1998) Structure and mechanical properties of Cu–X (X E Nb, Cr, Ni) nanolayered composites. Scripta Mater 39:555–560

    Article  Google Scholar 

  16. Lim SCV, Rollett AD (2009) Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu–Nb composite. Mater Sci Eng A 520:189–196. doi:10.1016/j.msea.2009.05.020

    Article  Google Scholar 

  17. Beyerlein IJ, Mara NA, Carpenter JS et al (2013) Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu–Nb multilayers fabricated by severe plastic deformation. J Mater Res 28:1799–1812. doi:10.1557/jmr.2013.21

    Article  Google Scholar 

  18. Carpenter JS, Vogel SC, Ledonne JE, Hammon DL, Beyerlein IJ, Mara NA (2012) Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding. Acta Mater 60:1576–1586

    Article  Google Scholar 

  19. Carpenter JS, McCabe RJ, Zheng SJ, Wynn TA, Mara NA, Beyerlein IJ (2014) Processing parameter influence on texture and microstructural evolution in Cu–Nb multilayer composites fabricated via accumulative roll bonding, Metall Mater Trans A. doi:10.1007/s11661-013-2162-4

  20. Thilly L, Lecouturier F, Von Stebut J (2002) Size-induced enhanced mechanical properties of nanocomposite copper/niobium wires: nanoindentation study. Acta Mater 50:5049–5065

    Article  Google Scholar 

  21. Demkowicz MJ, Thilly L (2011) Structure, shear resistance and interaction with point defects of interfaces in Cu–Nb nanocomposites synthesized by severe plastic deformation. Acta Mater 59:7744–7756

    Article  Google Scholar 

  22. Lee SB, LeDonne JE, Lim SCV, Beyerlein IJ, Rollett AD (2012) The heterophase interface character distribution of physical vapor-deposited and accumulative roll-bonded Cu–Nb multilayer composites. Acta Mater 60:1747–1761. doi:10.1016/j.actamat.2011.12.007

    Article  Google Scholar 

  23. Beyerlein IJ, Wang J, Zhang R (2013) Mapping dislocation nucleation behavior from bimetal interfaces. Acta Mater 61:7488–7499. doi:10.1016/j.actamat.2013.08.061

    Article  Google Scholar 

  24. Beyerlein IJ, Wang J, Kang K, Zheng SJ, Mara NA (2013) Twinnability of bimetal interfaces in nanostructured composites. Mater Res Lett 1:89–95. doi:10.1080/21663831.2013.782074

    Article  Google Scholar 

  25. Zheng S, Carpenter JS, McCabe RJ, Beyerlein IJ, Mara NA (2014) Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals. Sci Rep 4:1–6. doi:10.1038/srep04226

    Google Scholar 

  26. Carpenter JS, McCabe RJ, Beyerlein IJ, Wynn TA, Mara NA (2013) A wedge-mounting technique for nanoscale electron backscatter diffraction. J Appl Phys 113:094304. doi:10.1063/1.4794388

    Article  Google Scholar 

  27. Kang K, Wang J, Beyerlein IJ (2012) Atomic structure variations of mechanically stable fcc–bcc interfaces. J Appl Phys 111:053531

    Article  Google Scholar 

  28. Carpenter JS, Liu X, Darbal A et al (2012) A comparison of texture results obtained using precession electron diffraction and neutron diffraction methods at diminishing length scales in ordered bimetallic nanolamellar composites. Scripta Mater 67:336–339

    Article  Google Scholar 

  29. Beyerlein IJ, Mayeur JR, McCabe RJ, Zheng SJ, Carpenter JS, Mara NA (2014) Influence of slip and twinning on the crystallographic stability of bimetal interfaces in nanocomposites under deformation. Acta Mater 72:137–147

    Article  Google Scholar 

  30. Beyerlein IJ, Mayeur JR, Zheng SJ, Mara NA, Wang J, Misra A (2014) Emergence of stable interfaces under extreme plastic deformation. Proc Natl Acad Sci USA 111:4386–4390. doi:10.1073/pnas.1319436111

    Article  Google Scholar 

  31. Mayeur JR, Beyerlein IJ, Bronkhorst CA, Mourad HM, Hansen BL (2013) A crystal plasticity study of heterophase interface character stability of Cu/Nb bicrystals. Int J Plast 48:72–91

    Article  Google Scholar 

  32. Hirth JP (1972) Influence of grain boundaries on mechanical properties. Metall Trans 3:3047–3067

    Article  Google Scholar 

  33. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminium by molecular–dynamics simulation. Nat Mater 1:45–48

    Article  Google Scholar 

  34. Froseth AG, Derlet PM, Van Swygenhoven H (2004) Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance. Acta Mater 52:5863–5870. doi:10.1016/j.actamat.2004.09.001

    Article  Google Scholar 

  35. Shao S, Medyanik SN (2010) Interaction of dislocations with incoherent interfaces in nanoscale FCC–BCC metallic bi-layers. Modell Simul Mater Sci Eng 18:1–16. doi:10.1088/0965-0393/18/5/055010

    Article  Google Scholar 

  36. Gupta N, Baskes MI, Srinivasan SG (2011) The role of interface structure in spallation of a layered nanocomposite. JOM 63:74–77

    Article  Google Scholar 

  37. Zhang RF, Germann TC, Wang J, Liu XY, Beyerlein IJ (2012) Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: non-equilibrium molecular dynamics simulations. Scripta Mater 68:114–117. doi:10.1016/j.scriptamat.2012.09.022

    Article  Google Scholar 

  38. Li J (1963) Petch relation and grain boundary sources. Trans Metall Soc AIME 227:239–247

    Google Scholar 

  39. Beyerlein IJ, Wang J, Zhang R (2013) Interface-dependent nucleation in nanostructured layered composites. APL Mater 1:032112

    Article  Google Scholar 

  40. Zhang RF, Wang J, Beyerlein IJ, Misra A, Germann TC (2012) Atomic-scale study of nucleation of dislocations from fcc–bcc interfaces. Acta Mater 60:2855–2865. doi:10.1016/j.actamat.2012.01.050

    Article  Google Scholar 

  41. Wang J, Zhang RF, Zhou CZ, Beyerlein IJ, Misra A (2013) Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int J Plast 53:40–55. doi:10.1016/j.ijplas.2013.07.002

    Article  Google Scholar 

  42. Zhang RF, Wang J, Beyerlein IJ, Germann TC (2011) Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scripta Mater 65:1022–1025. doi:10.1016/j.scriptamat.2011.09.008

    Article  Google Scholar 

  43. Beyerlein IJ, Mara NA, Wang J et al (2012) Structure-property-functionality of bimetal interfaces. JOM 64:1192–1207

    Article  Google Scholar 

  44. Wang J, Kang K, Zhang RF, Zheng SJ, Beyerlein IJ, Mara NA (2012) Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM 64:1208–1217

    Article  Google Scholar 

  45. Mahajan S (2013) Critique of mechanisms of formation of deformation, annealing and growth twins: face-centered cubic metals and alloys. Scripta Mater 68:95–99. doi:10.1016/j.scriptamat.2012.09.011

    Article  Google Scholar 

  46. Zhu YT, Liao XZ, Wu XL (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57:1–62. doi:10.1016/j.pmatsci.2011.05.001

    Article  Google Scholar 

  47. Beyerlein IJ, Mara NA, Bhattacharyya D, Alexander DJ, Necker CT (2011) Texture evolution via combined slip and deformation twinning in rolled silver–copper cast eutectic nanocomposite. Int J Plast 27:121–146

    Article  Google Scholar 

  48. Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. (Reports). (dislocation pile-up theory). Science 300:1275–1277

    Article  Google Scholar 

  49. Yue Y, Liu P, Deng Q, Ma E, Zhang Z, Han X (2012) Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires. Nano Lett 12:4045–4049. doi:10.1021/nl3014132

    Article  Google Scholar 

  50. Zhu YT, Liao XZ, Srinivasan SG et al (2004) Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl Phys Lett 85:5049–5051. doi:10.1063/1.1823042

    Article  Google Scholar 

  51. McCabe RJ, Beyerlein IJ, Carpenter JS, Mara NA (2014) The critical role of grain orientation and applied stress in nanoscale twinning. Nat Commun 5:3806

  52. Misra A, Hirth JP, Hoagland RG, Embury JD, Kung H (2004) Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater 52:2387–2394

    Article  Google Scholar 

  53. Misra A, Zhang X, Hammon D, Hoagland RG (2005) Work hardening in rolled nanolayered metallic composites. Acta Mater 53:221–226

    Article  Google Scholar 

  54. Mara NA, Tamayo T, Sergueeva AV, Zhang X, Misra A, Mukherjee AK (2007) The effects of decreasing layer thickness on the high temperature mechanical behavior of Cu/Nb nanoscale multilayers. Thin Solid Films 515:3241–3245

    Article  Google Scholar 

  55. Mara NA, Misra A, Hoagland RG et al (2008) High-temperature mechanical behavior/microstructure correlation of Cu/Nb nanoscale multilayers. Mater Sci Eng A 493:274–282

    Article  Google Scholar 

  56. Mara NA, Bhattacharyya D, Hoagland RG, Misra A (2008) Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scripta Mater 58:874–877

    Article  Google Scholar 

  57. Mara NA, Bhattacharyya D, Dickerson P, Hoagland RG, Misra A (2008) Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl Phys Lett 92:231901

    Article  Google Scholar 

  58. Li N, Mara NA, Wang J, Dickerson P, Huang JY, Misra A (2012) Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers. Scripta Mater 67:479–482

    Article  Google Scholar 

  59. Han WZ, Misra A, Mara NA et al (2011) Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos Mag 91:4172–4185

    Article  Google Scholar 

  60. Han WZ, Carpenter JS, Wang J, Beyerlein IJ, Mara NA (2012) Atomic-level study of twin nucleation from face-centered-cubic/body- centered-cubic interfaces in nanolamellar composites. Appl Phys Lett 100:011911-011911

    Google Scholar 

  61. Zheng SJ, Beyerlein IJ, Wang J, Carpenter JS, Han WZ, Mara NA (2012) Deformation twinning mechanisms from bimetal interfaces as revealed by in situ straining in the TEM. Acta Mater 60:5858–5866

    Article  Google Scholar 

  62. Hunter A, Beyerlein IJ (2014) Stacking fault emission from grain boundaries: material dependencies and grain size effects. Mater Sci Eng A 600:200–210. doi:10.1016/j.msea.2014.02.030

    Article  Google Scholar 

  63. Hunter A, Beyerlein IJ (2013) Unprecedented grain size effect on stacking fault width. APL Mater 1:032109

    Article  Google Scholar 

  64. Wang ZQ, Beyerlein IJ, Lesar R (2009) Plastic anisotropy in fcc single crystals in high rate deformation. Int J Plast 25:26–48. doi:10.1016/j.ijplas.2008.01.006

    Article  Google Scholar 

  65. Mara NA, Bhattacharyya D, Hirth JP, Dickerson P, Misra A (2009) Mechanism for shear banding in nanolayered composites. Appl Phys Lett 97:021909

    Article  Google Scholar 

  66. Wagner P, Engler O, Lucke K (1995) Formation of Cu-type shear bands and their influence on deformation and texture of rolled f.c.c. {112}〈111〉 single crystals. Acta Metall Mater 43:3799–3812

    Article  Google Scholar 

  67. Mara N, Sergueeva A, Misra A, Mukherjee AK (2004) Structure and high-temperature mechanical behavior relationship in nano-scaled multilayered materials. Scripta Mater 50:803–806

    Article  Google Scholar 

  68. Monclus MA, Zheng SJ, Mayeur JR, et al (2014) Optimum high temperature strength of two-dimensional nanocomposites. Appl Phys Lett Mater 1:052103

  69. Hansen BL, Carpenter JS, Sintay SD et al (2013) Modeling the texture evolution of Cu/Nb layered composites during rolling. Int J Plast 49:71–84. doi:10.1016/j.ijplas.2013.03.001

    Article  Google Scholar 

  70. Wang ZQ, Beyerlein IJ (2011) An atomistically-informed dislocation dynamics model for the plastic anisotropy and tension–compression asymmetry of BCC metals. Int J Plast 27:1471–1484. doi:10.1016/j.ijplas.2010.08.011

    Article  Google Scholar 

  71. Lehoczky SL (1978) Retardation of dislocation generation and motion in thin-layered metal laminates. Phys Rev Lett 41:1814–1818

    Article  Google Scholar 

  72. Han WZ, Cerreta EK, Mara NA et al (2014) Deformation and failure of shocked bulk Cu–Nb nanolaminates. Acta Mater 63:150–161

    Article  Google Scholar 

  73. Huang JC, Gray GT (1988) Substructure evolution and deformation modes in shock-loaded niobium. Mater Sci Eng A 103:241–255. doi:10.1016/0025-5416(88)90514-9

    Article  Google Scholar 

  74. Zhang RF, Wang J, Beyerlein IJ, Germann TC (2011) Twinning in bcc metals under shock loading: a challenge to empirical potentials. Philos Mag Lett 91:731–740. doi:10.1080/09500839.2011.615348

    Article  Google Scholar 

  75. Al-Fadhalah K, Tome CN, Beaudoin AJ, Robertson IM, Hirth JP, Misra A (2005) Modeling texture evolution during rolling of a Cu–Nb multilayered system. Philos Mag 85:1419–1440

    Article  Google Scholar 

  76. Mayeur J, Beyerlein I, Bronkhorst C, Mourad H (2014) The influence of grain interactions on the plastic stability of heterophase interfaces. Materials 7:302–322. doi:10.3390/ma7010302

    Article  Google Scholar 

  77. Han W, Demkowicz MJ, Mara NA et al (2013) Design of radiation tolerant materials via interface engineering. Adv Mater 25:6975–6979. doi:10.1002/adma.201303400

    Article  Google Scholar 

  78. Carpenter JS, Nizolek T, McCabe RJ, Mara NA, Beyerlein IJ, Pollock TM (2014) Fabrication of nano-lamellar Zr/Nb composites, Mater Res Lett (in review)

  79. Ardeljan M, Knezevic M, Nizolek T, et al (2014) A multi-scale model for texture development in Zr/Nb nanoayered composites processed by accumulative roll bonding. Mater Sci Eng, IOP conference series (in press)

  80. Beyerlein IJ, McCabe RJ, Tome CN (2011) Stochastic processes of 10–12 deformation twinning in hexagonal close-packed polycrystalline zirconium and magnesium. Int J Multiscale Comput Eng 9:459–480. doi:10.1615/IntJMultCompEng.v9.i4.80

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy, Office of Science. The authors would like to thank Dr. J. R. Mayeur for use of Fig. 16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan A. Mara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mara, N.A., Beyerlein, I.J. Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J Mater Sci 49, 6497–6516 (2014). https://doi.org/10.1007/s10853-014-8342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8342-9

Keywords

Navigation