Skip to main content

Advertisement

Log in

Improved structures for data collection in static and mobile wireless sensor networks

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of efficient data gathering in sensor networks for arbitrary sensor node deployments. The efficiency of the solution is measured by a number of criteria: total energy consumption, total transport capacity, latency and quality of the transmissions. We present a number of different constructions with various tradeoffs between aforementioned parameters. We provide theoretical performance analysis for our approaches, present their distributed implementation and discuss the different aspects of using each. We show that in many cases our output-sensitive approximation solution performs better than the currently known best results for sensor networks. We also consider our problem under the mobile sensor nodes environment, when the sensors have no information about each other. The only information a single sensor holds is its current location and future mobility plan. Our simulation results validate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The Euclidean minimum spanning tree minimizes the energy consumption, see Segal and Shpungin (2009) and Wan et al. (2001).

References

  • Andreae, T., Bandelt, H.-J.: Performance guarantees for approximation algorithms depending on parametrized triangle inequalities. SIAM J. Discret. Math. 8(1), 1–16 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related problems. ACM STOC 1987, 230–240 (1987)

    Google Scholar 

  • Basch, J.: Kinetic data structures. Ph.D. Dissertation, Stanford University (1999)

  • Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In: SODA’97, pp. 747–756 (1997)

  • Beier, R., Sanders, P., Sivadasan, N.: Energy optimal routing in radio networks using geometric data structures. In: ICALP’02, pp. 366–376 (2002)

  • Ben-Shimol, Y., Dvir, A., Segal, M.: Splast: a novel approach for multicasting in mobile wireless ad hoc networks. In: IEEE PIMRC’04, pp. 1011–1015 (2004)

  • Calinescu, G., Kapoor, S., Sarwat, M.: Bounded-hops power assignment in ad hoc wireless networks. Discret. Appl. Math. 154(9), 1358–1371 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Chandrakasan, A., Amirtharajah, R., Cho, S., Goodman, J., Konduri, G., Kulik, J., Rabiner, W., Wang, A.: Design considerations for distributed microsensor systems. In: CICC’99, pp. 279–286 (1999)

  • Chau, C.-K., Gibbens, R.J., Towsley, D.: Impact of directional transmission in large-scale multi-hop wireless ad hoc networks. In: INFOCOM, pp. 522–530 (2012)

  • Clementi, A.E.F., Ferreira, A., Penna, P., Perennes, S., Silvestri, R.: The minimum range assignment problem on linear radio networks. In: ESA’00, pp. 143–154 (2000)

  • Clementi, A.E.F., Penna, P., Silvestri, R.: On the power assignment problem in radio networks. Electron. Colloq. Comput. Complex. 7(054) (2000)

  • Clementi, A.E.F., Penna, P., Silvestri, R.: The power range assignment problem in radio networks on the plane. In: STACS’00, pp. 651–660 (2000)

  • Dolev, S., Segal, M., Shpungin, H.: Bounded-hop energy-efficient liveness of flocking swarms. IEEE Trans. Mob. Comput. 12(3), 516–528 (2013)

    Article  Google Scholar 

  • Dolev, S., Segal, M., Shpungin, H.: Bounded-hop energy-efficient liveness of flocking swarms. IEEE Trans. Mob. Comput. 12(3), 516–528 (2013)

    Article  Google Scholar 

  • Elkin, M., Lando, Y., Nutov, Z., Segal, M., Shpungin, H.: Novel algorithms for the network lifetime problem in wireless settings. ACM Wirel. Netw. 17(2), 397–410 (2011)

    Article  Google Scholar 

  • Funke, S., Soren Laue, S.: Bounded-hop energy-efficient broadcast in low-dimensional metrics via coresets. In: STACS’07, vol. 4393, pp. 272–283 (2007)

  • Gao, J., Guibas, L., Hersheberger, J., Zhang, L., Zhu, A.: Geometric spanner for routing in mobile networks. In: ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc01), pp. 45–55 (2001)

  • Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. Comput. Geom. Theory Appl. 35(1), 2–19 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Halldórsson, M.M., Mitra, P.: Distributed connectivity of wireless networks. In: PODC, pp. 205–214 (2012)

  • Hassin, Y., Peleg, D.: Sparse communication networks and efficient routing in the plane. Distrib. Comput. 14(4), 205–215 (2001)

    Article  Google Scholar 

  • Huang, H., Richa, A.W., Segal, M.: Approximation algorithms for the mobile piercing set problem with applications to clustering in ad-hoc networks. MONET 9(2), 151–161 (2004)

    Google Scholar 

  • Huang, H., Richa, A.W., Segal, M.: Dynamic coverage in ad-hoc sensor networks. Mobile Netw. Appl. 10(1–2), 9–17 (2005)

    Article  Google Scholar 

  • Ji, S., Beyah, R.A., Li, Y.: Continuous data collection capacity of wireless sensor networks under physical interference model. In: IEEE MASS’11, pp. 222–231 (2011)

  • Jovicic, A., Viswanath, P., Kulkarni, S.R.: Upper bounds to transport capacity of wireless networks. IEEE Trans. Inf. Theory 50(11), 2555–2565 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning and shortest path trees. In: SODA’93, pp. 243–250 (1993)

  • Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet radio networks. Theoret. Comput. Sci. 243(1–2), 289–305 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Kothapalli, K., Scheideler, C., Onus, M., Richa, A.W.: Constant density spanners for wireless ad-hoc networks. In: SPAA’05, pp. 116–125 (2005)

  • Ramanan, K., Baburaj, E.: Data gathering algorithms for wireless sensor networks: a survey. In: IJASUC, 1 (2010)

  • Li, X., Yan, S., Xu, C., Nayak, A., Stojmenovic, I.: Localized delay-bounded and energy-efficient data aggregation in wireless sensor and actor networks. Wirel. Commun. Mobile Comput. 11(12), 1603–1617 (2011)

    Article  Google Scholar 

  • Li, X.-Y., Wang, Y., Wang, Y.: Complexity of data collection, aggregation, and selection for wireless sensor networks. IEEE Trans. Comput. 60(3), 386–399 (2011)

    Article  MathSciNet  Google Scholar 

  • Li, Y., Thai, M.T., Wang, F., Du, D.-Z.: On the construction of a strongly connected broadcast arborescence with bounded transmission delay. IEEE Trans. Mob. Comput. 5(10), 1460–1470 (2006)

    Article  Google Scholar 

  • Milyeykovsky, V., Segal, M., Shpungin, H.: Location, location, location: Using central nodes for efficient data collection in wsns. In: IEEE WIOPT (2013)

  • Monma, C.L., Suri, S.: Transitions in geometric minimum spanning trees. Discret. Comput. Geom. 8, 265–293 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Pahlavan, K., Levesque, A.H.: Wireless information networks. Wiley-Interscience, London (1995)

    Google Scholar 

  • Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J.J.: Energy-efficient collision-free medium access control for wireless sensor networks. In: SenSys’03, pp. 181–192 (2003)

  • Redmond, C., Yukich, J.: Asymptotics for euclidean functionals with power-weighted edges. Stochast. Process. Appl. 61(2), 289–304 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Segal, M., Shpungin, H.: Improved multi-criteria spanners for ad-hoc networks under energy and distance metrics. In: IEEE INFOCOM’10, pp. 6–10. Also in ACM Trans. Sensor Netw. (to appear) (2013)

  • Segal, M., Shpungin, H.: On construction of minimum energy \(k\)-fault resistant topology. Ad Hoc Netw. 7(2), 363–373 (2009)

    Article  Google Scholar 

  • Shpungin, H., Segal, M.: Low-energy fault-tolerant bounded-hop broadcast in wireless networks. IEEE/ACM Trans. Netw. 17(2), 582–590 (2009)

    Article  Google Scholar 

  • Shpungin, H., Segal, M.: Near optimal multicriteria spanner constructions in wireless ad-hoc networks. IEEE/ACM Trans. Netw. 18(6), 1963–1976 (2010)

    Article  Google Scholar 

  • Steele, J.M.: Probability and problems in euclidean combinatorial optimization. Stat. Sci. 8(1), 48–56 (1993)

    Article  Google Scholar 

  • van Hoesel, L., Havinga, P.: A lightweight medium access protocol (lmac) for wireless sensor networks: reducing preamble transmissions and transceiver state switches. In: INSS’04, pp. 205–208 (2004)

  • Wan, P.-J., Calinescu, G., Li, X., Frieder, O.: Minimum-energy broadcast routing in static ad hoc wireless networks. In: INFOCOM’01, pp. 1162–1171 (2001)

  • Xie, L.-L., Kumar, P.R.: A network information theory for wireless communication: scaling laws and optimal operation. IEEE Trans. Inf. Theory 50(5), 748–767 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Xie, L.-L., Kumar, P.R.: On the path-loss attenuation regime for positive cost and linear scaling of transport capacity in wireless networks. IEEE Trans. Inf. Theory 52(6), 2313–2328 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Xue, F., Xie, L.-L., Kumar, P.R.: The transport capacity of wireless networks over fading channels. IEEE Trans. Inf. Theory 51(3), 834–0847 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Yun, Y., Xia, Y., Behdani, B., Smith, J.C.: Distributed algorithm for lifetime maximization in a delay-tolerant wireless sensor network with a mobile sink. IEEE Trans. Mob. Comput. 12(10), 1920–1930 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to Engineering and Physical Sciences Research Council (EPSRC), United Kingdom for providing support to the work on this paper and to the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Segal.

Additional information

Preliminary version of this paper has been accepted to IEEE INFOCOM 2014 conference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crowcroft, J., Segal, M. & Levin, L. Improved structures for data collection in static and mobile wireless sensor networks. J Heuristics 21, 233–256 (2015). https://doi.org/10.1007/s10732-014-9250-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-014-9250-5

Keywords

Navigation