Skip to main content
Log in

The hyperplane is the only stable, smooth solution to the Isoperimetric Problem in Gaussian space

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study stable, two-sided, smooth, properly immersed solutions to the Gaussian Isoperimetric Problem. That is, we study hyper-surfaces \(\Sigma ^n \subset {{\mathbb {R}}}^{n+1}\) that are second order stable critical points of minimizing \({{\mathcal {A}}}_\mu (\Sigma ) = \int _\Sigma e^{-|x|^2/4} \, d {{\mathcal {A}}}\) for compact variations that preserve weighted volume. Such variations are represented by \(u \in C^\infty _0(\Sigma )\) such that \(\int _\Sigma e^{-|x|^2/4} u \, d {{\mathcal {A}}}= 0\). We show that such \(\Sigma \) satisfy the curvature condition \(H = \langle x, N \rangle /2 + C\) where \(C\) is a constant. We also derive the Jacobi operator \(L\) for the second variation of such \(\Sigma \). Our first main result is that for non-planar \(\Sigma \), bounds on the index of \(L\), acting on volume preserving variations, gives us that \(\Sigma \) splits off a linear space. A corollary of this result is that hyper-planes are the only stable smooth, complete, properly immersed solutions to the Gaussian Isoperimetric Problem, and that there are no hypersurfaces of index one. Finally, we show that for the case of \(\Sigma ^2 \subset {{\mathbb {R}}}^3\), there is a gradient decay estimate for fixed bound \(|C| \le M\) (\(C\) is from the curvature condition) and \(\Sigma \) obeying an appropriate \({{\mathcal {A}}}_\mu \) condition. This shows that for fixed \(C\), in the limit as \(R \rightarrow \infty \), stable \((\Sigma , \partial \Sigma ) \subset (B_{2R}(0), \partial B_{2R}(0))\) with good volume growth bounds approach hyper-planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S.B.: Shrinking doughnuts. In: Lloyd, N.G., Ni, W.M., Peletier, L.A., Serrin, J. (eds.) Nonlinear diffusion equations and their equilibrium states, 3. Proceedings from a Conference, Gregynog, 20–29 August 1989, vol. 7, pp. 21–38. Brikhäuser, Boston (1992)

    Chapter  Google Scholar 

  2. Atkinson, K., Han, W.: Spherical harmonics and approximations on the unit sphere: an introduction, volume 2044 of Lecture notes in mathematics. Springer, Heidelberg (2012)

  3. Barbosa, J.L, do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185(3), 339–353 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borell, C.: The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30(2), 207–216 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheng, X., Mejia, T., Zhou, D.: Stability and compactness for complete f-minimal surfaces. ArXiv e-prints, October (2012)

  6. Choi, H.I., Schoen, R.: The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature. Invent. Math. 81(3), 387–394 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Colding, T.H., Minicozzi II, W.P.: Generic mean curvature flow I: generic singularities. Ann. Math. (2) 175(2), 755–833 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Colding, T.H, Minicozzi II, W.P.: A course in minimal surfaces, volume 121 of graduate studies in mathematics. American Mathematical Society, Providence (2011)

    Google Scholar 

  9. Impera, D., Rimoldi, M.: Stability properties and topology at infinity of f-minimal hypersurfaces. ArXiv e-prints, February (2013)

  10. Kapouleas, N., Kleene, S.J., Møller, N.M.: Mean curvature self-shrinkers of high genus: non-compact examples. ArXiv e-prints, June (2011)

  11. Morgan, F., Ritoré, M.: Isoperimetric regions in cones. Trans. Am. Math. Soc. 354(6), 2327–2339 (2002)

    Article  MATH  Google Scholar 

  12. Nguyen, X.H.: Construction of complete embedded self-similar surfaces under mean curvature flow part iii. Duke Math. J. 163(11), 2023–2056 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Palmer, B.: Stability of the Wulff shape. Proc. Am. Math. Soc. 126(12), 3661–3667 (1998)

    Article  MATH  Google Scholar 

  14. Ros, A.: The isoperimetric problem. In: Hoffman, D. (ed.) Global Theory of Minimal Surfaces, volume 2 of Clay Math. Proc., pp. 175–209. American Mathematical Society, Providence (2005)

  15. Schoen, R., Simon, L., Yau, S.T.: Curvature estimates for minimal hypersurfaces. Acta Math. 134(3–4), 275–288 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schwarz, H.A.: Gesammelte mathematische Abhandlungen. Band I, II. Chelsea Publishing Co., Bronx, 1972. Nachdruck in einem Band der Auflage von (1890)

  17. Steiner, J.: Sur le maximum et le minimum des figures dans le plan, sur la sphere et dans l’espace en general. Premier memoire. Journal für die reine und angewandte Mathematik, 1842(24), 93–152 (2009)

  18. Sudakov, V.N., Tsirel’son, B.S.: Extremal properties of half-spaces for spherically invariant measures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 41:14–24, 165, 1974. Problems in the theory of probability distributions, II

  19. Wente, H.C.: A note on the stability theorem of J. L. Barbosa and M. Do Carmo for closed surfaces of constant mean curvature. Pac. J. Math. 147(2), 375–379 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor William Minicozzi for his valuable support and direction. They would also like to thank the reviewer for their valuable help and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew McGonagle.

Appendix: mean value inequality

Appendix: mean value inequality

Here we give a proof of the Mean Value Inequality, Lemma 7.2. The techniques are well-known (see Colding-Minicozzi [8]), but we include a proof for completeness.

Proof of Lemma 7.2

Assume \({|}H{|} \le M\). Lemma 7.2 is stated in terms of Euclidean quantities, so we are free to translate so that we are considering \(B_s(0)\). Recall that \(\Delta {|}x{|}^2 = 2n - 2\langle x,N \rangle H\). Then

$$\begin{aligned} 2n\int \limits _{B_s \cap \Sigma } f \, d {{\mathcal {A}}}&= \int \limits _{B_s \cap \Sigma } f\Delta {|}x{|}^2 \, d {{\mathcal {A}}}+ 2\int \limits _{B_s \cap \Sigma }f\langle x, N\rangle H \, d {{\mathcal {A}}}, \nonumber \\&= \int \limits _{B_s \cap \Sigma }{|}x{|}^2 \Delta f \, d {{\mathcal {A}}}+ 2\int \limits _{\partial B_s \cap \Sigma } f {|}x^T{|}\, d {{\mathcal {A}}}\nonumber \\&- s^2 \int \limits _{B_s \cap \Sigma } \Delta f \, d {{\mathcal {A}}}+ 2 \int \limits _{B_s \cap \Sigma } \langle x,N \rangle Hf \, d {{\mathcal {A}}}. \end{aligned}$$
(8.1)

Let \(g(s) = s^{-n}\int \limits _{B_s \cap \Sigma } f\, d {{\mathcal {A}}}\). Using the coarea formula and (8.1), we get

$$\begin{aligned} g'(s) \ge \frac{1}{2}s^{-n+1}\int \limits _{B_s \cap \Sigma } \Delta f \, d {{\mathcal {A}}}- s^{-n-1}\int \limits _{B_s \cap \Sigma }\langle x, N\rangle f H \, d {{\mathcal {A}}}. \end{aligned}$$
(8.2)

Here we have used the positivity of \(f\). Additionally, if we assume \(\Delta f \ge -\lambda t^{-2} f\) on \(B_t\), our bound on \({|}H{|}\) gives us

$$\begin{aligned} g'(s)&\ge \frac{-\lambda }{2} s^{1-n}\int \limits _{B_s \cap \Sigma }f t^{-2}\, d {{\mathcal {A}}}- Ms^{-1-n}\int \limits _{B_s \cap \Sigma }s f \, d {{\mathcal {A}}},\nonumber \\&\ge -\left( \frac{\lambda }{2t} + M\right) g(s) \end{aligned}$$
(8.3)

for all \(s\le t\). Therefore,

$$\begin{aligned} \frac{d}{ds}\left( g(s)e^{\left( \frac{\lambda }{2t} + M\right) s}\right) \ge 0. \end{aligned}$$
(8.4)

Integrating (8.4) from \(s_0\) to \(s_1\) (both assumed to be less than \(t\)) and letting \(s_0 \searrow 0\), we get

$$\begin{aligned} e^{\left( \frac{\lambda }{2t} + M\right) s_1} s_1^{-n}\int \limits _{B_{s_1}\cap \Sigma } f \, d {{\mathcal {A}}}\ge \omega _nf(p). \end{aligned}$$
(8.5)

\(\square \)

Note, that we get the following corollary (monotonicity):

Corollary 8.1

Let \(p \in \Sigma \), and let \({|}H{|} \le M\) in \(B_{t}(p) \cap \Sigma \). Then for \(s\le t\), we have \({|}B_s \cap \Sigma {|} \ge \omega _n e^{-Ms}s^n\), where \(\omega _n\) is the volume of the standard unit ball in \({{\mathbb {R}}}^n\).

Proof

Use the Mean Value Inequality, Lemma 7.2 with \(f\equiv 1\) and \(\lambda = 0\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGonagle, M., Ross, J. The hyperplane is the only stable, smooth solution to the Isoperimetric Problem in Gaussian space. Geom Dedicata 178, 277–296 (2015). https://doi.org/10.1007/s10711-015-0057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0057-9

Keywords

Mathematics Subject Classification

Navigation