Skip to main content
Log in

Fusion: a general framework for hierarchical tilings of \(\mathbb{R }^d\)

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We introduce a formalism for handling general spaces of hierarchical tilings, a category that includes substitution tilings, Bratteli–Vershik systems, S-adic transformations, and multi-dimensional cut-and-stack transformations. We explore ergodic, spectral and topological properties of these spaces. We show that familiar properties of substitution tilings carry over under appropriate assumptions, and give counter-examples where these assumptions are not met. For instance, we exhibit a minimal tiling space that is not uniquely ergodic, with one ergodic measure having pure point spectrum and another ergodic measure having mixed spectrum. We also exhibit a 2-dimensional tiling space that has pure point measure-theoretic spectrum but is topologically weakly mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. If we wish, we can also add labels to the supertiles, so that the information carried in an \(n\)-supertile is more than just its composition as a patch in a tiling. This generalization is useful for collaring constructions, as in Sect. 5.

  2. Ergodic theorems are often stated not with balls, but in terms of Følner or van Hove sequences that have special properties, such as being “regular” or “tempered”. That generality is useful for computing frequencies using different sampling regions, or when considering more complicated groups than \(\mathbb{R }^d\). For our purposes, however, balls are sufficient.

  3. Note that this condition is translation-invariant, as every point in \(T\) would then lie in a sequence of unexceptional supertiles whose union is the entire line.

  4. This is connected to the height of a substitution or fusion. If a substitution has height one, then all eigenvalues of \(X_\mathcal{R }\) are eigenvalues of \(S_\mathcal{R }\) [47]. One can similarly define a notion of height for fusions.

  5. There is some flexibility with the geometry of the prototiles. They could be parallelograms or rectangles, and there are two vertical and two horizontal degrees of freedom for the lengths of the sides.

  6. The absence of the \(\sqrt{5}\) that is present in Example 4.4 is due to the integer size of the prototiles.

References

  1. Adams, T.: Smorodinsky’s conjecture on rank-one mixing. Proc. Am. Math. Soc. 126(3), 739–744 (1998)

    Article  MATH  Google Scholar 

  2. Adams, T., Silva, C.: \({\mathbb{Z}}^d\) staircase actions. Ergod. Theory Dyn. Syst. 19(4), 837–850 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aliste-Prieto, J., Coronel, D.: Tower systems for Linearly repetitive Delone sets. Ergod. Theory Dyn. Syst. 31, 1595–1618 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anderson, J., Putnam, I.F.: Topological invariants for substitution tilings and their C*-algebras. Ergod. Theory Dyn. Syst. 18, 509–537 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnoux, P., Ornstein, D.S., Weiss, B.: Cutting and stacking, interval exchanges and geometric models. Israel J. Math. 50(1–2), 160–168 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barge, M., Diamond, B.: Cohomology in one-dimensional substitution tiling spaces. Proc. Am. Math. Soc. 136(6), 2183–2191 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barge, M., Diamond, B., Hunton, J., Sadun, L.: Cohomology of substitution tiling spaces. Ergod. Theory Dyn. Syst. 30, 1607–1627 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bressaud, X., Durand, F., Maass, A.: On the eigenvalues of finite rank Bratteli–Vershik dynamical systems. J. Lond. Math. Soc. 2nd Ser. 72, 799–816 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bellissard, J., Benedetti, R., Gambaudo, J.-M.: Spaces of tilings, finite telescopic approximations and gap-labeling. Commun. Math. Phys. 261(1), 1–41 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bellissard, J., Julien, A., Savinien, J.: Tiling groupoids and Bratteli diagrams. Ann. Henri Poincaré 11(1), 69–99 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berger, R.: The undecidability of the domino problem. Memoirs Am. Math. Soc. 66, 1–72 (1966)

    Google Scholar 

  12. Bezuglyi, S., Kwiatkowski, J., Medynets, K., Solomyak, B.: Finite rank Bratteli diagrams: structure of invariant measures. Trans. Am. Math. Soc. 365, 2637–2679 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cortez, M., Gambaudo, J.-M., Maass, A.: Rotation topological factors of minimal \({\mathbb{Z}}^d\) actions on the Cantor set. Trans. Am. Math. Soc. 359, 2305–2315 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chacon, R.V.: A geometric construction of measure preserving transformations. In: Fifth Berkeley Symposium Mathematical Statistics and Probability (Berkeley, CA 1965/55), vol 2: Contributions to Probability Theory, Part 2, pp. 335–360. University of California Press, Berkeley, CA (1967)

  15. Clark, A., Sadun, L.: When size matters: subshifts and their related tiling spaces. Ergod. Theory Dyn. Syst. 23, 1043–1057 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Clark, A., Sadun, L.: When shape matters: deformations of tiling spaces. Ergod. Theory Dyn. Syst. 26, 69–86 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cohen, R.: A Chacon \({\mathbb{R}}^2\)-action and proof of two-fold self-joining. Dissertation, Department of Mathematics, Bryn Mawr College (1993)

  18. Danilenko, A.I., Silva, C.E.: Mixing rank-one actions of locally compact abelian groups. Ann. Inst. H. Poincaré Probab. Stat. 43(4), 375–398 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dekking, F.M.: The spectrum of dynamical systems arising from substitutions of constant length. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41, 221–239 (1977)

    Article  MathSciNet  Google Scholar 

  20. Dekking, F.M., Keane, M.: Mixing properties of substitutions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42, 23–33 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  21. Downarowicz, T.: The Choquet simplex of invariant measures for minimal flows. Israel J. Math. 74, 241–256 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Durand, F.: Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Theory Dyn. Syst. 20, 1061–1078 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ferenczi, S., Fisher, A.M., Talet, M.: Minimality and unique ergodicity of adic transformations. J. Anal. Math. 109, 1–31 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fisher, A.M.: Nonstationary mixing and the unique ergodicity of adic transformations. Stoch. Dyn. 9, 335–391 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Frank, N.P.: A primer on substitutions tilings of Euclidean space. Expo. Math. 26(4), 295–326 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Frank, N.P., Robinson Jr, E.A.: Generalized \(\beta \)-expansions, substitution tilings, and local finiteness. Trans. Am. Math. Soc. 360(3), 1163–1177 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Frank, N.P., Solomyak, B.: A characterization of planar pseudo-self-similar tilings. Discrete Comput. Geom. 26(3), 289–306 (2001)

    Article  MathSciNet  Google Scholar 

  28. Frank, N.P., Sadun, L.: Fusion tilings with infinite local complexity. In: Topology Proceedings. arXiv:1201.3911 (2013)

  29. Gähler, F., Maloney, G.: Cohomology of one-dimensional mixed substitution tiling spaces. Preprint 2011, arXiv:1112.1475 (2011)

    Google Scholar 

  30. Gardner, M.: Extraordinary nonperiodic tiling that enriches the theory of tiles. Sci. Am. 231, 116–119 (1977)

    Article  Google Scholar 

  31. Goodman-Strauss, C.: Matching rules and substitution tilings. Ann. Math. 147, 181–223 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Holton, C., Radin, C., Sadun, L.: Conjugacies for tiling dynamical systems. Commun. Math. Phys. 254(2), 343–359 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Host, B.: Valeurs propres de systèmes dynamiques definis par de substitutions de longueur variable. Ergod. Theory Dyn. Syst. 6, 529–540 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jewett, R.I.: The prevalence of uniquely ergodic systems. J. Math. Mech. 19, 717–729 (1969/1970)

    Google Scholar 

  35. Johnson, A.S.A., Sahin, A.: Rank one and loosely Bernoulli actions in \({\mathbb{Z}}^d\). Ergod. Theory Dyn. Syst. 18(5), 1159–1172 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kellendonk, J., Putnam, I.: Tilings, \(C^*\)-algebras, and \(K\)-theory. In: Directions in Mathematical Quasicrystals. CRM Monogr. Ser. 13, Amer. Math. Soc., pp. 177–206. Providence, RI (2000)

  37. Kellendonk, J., Sadun, L.: Meyer sets, topological eigenvalues and Cantor fiber bundles. Preprint arXiv:1211.2250 to appear in Journal of London Mathematical Society (2013)

  38. Krieger, W.: On unique ergodicity. In: Proceedings of the Sixth Berkeley Symposium Mathematical Statistics and Probability (Berkeley, California, 1970/1971), vol. II: Probability Theory, pp. 327–346. University of California Press, Bekeley, CA (1972)

  39. Morse, M.: Recurrent geodesics on a surface of negative curvature. Trans. Am. Math. Soc. 22, 84–100 (1921)

    Article  MATH  MathSciNet  Google Scholar 

  40. Mossé, B.: Puissances de mots et reconnaissabilit des points fixes d’une substitution. Theor. Comput. Sci. 99(2), 327–334 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. Mozes, S.: Tilings, substitution systems and dynamical systems generated by them. J. Anal. Math. 53, 139–186 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nevo, A.: Pointwise ergodic theorems for actions of groups. In: Handbook of Dynamical Systems, vol. 1B, pp. 871–982. Elsevier B. V, Amsterdam (2006)

  43. Ormes, N., Radin, C., Sadun, L.: A homeomorphism invariant for substitution tiling spaces. Geom. Dedicata 90, 153–182 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ornstein, D.S., Weiss, B.: Ergodic theory of amenable group actions. I: the Rohlin lemma. Bull. Am. Math. Soc. 2(1), 161–164 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  45. Petersen, K.: Ergodic Theory, Cambridge Studies in Advanced Mathematics 2. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  46. Prouhet, E.: Mémoir sur quelques relations entre les puissances des nombres. C. R. Acad. Sci. Paris Sr. 1(33), 225 (1851)

    Google Scholar 

  47. Queffelec, M.: Substitution Dynamical Systems—Spectral Analysis. Springer, Berlin (1987)

    MATH  Google Scholar 

  48. Radin, C.: The pinwheel tilings of the plane. Ann. Math. 139(3), 661–702 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  49. Rand, B.: Pattern-equivariant cohomology of tiling spaces with rotations Ph.D. dissertation, University of Texas (2006)

  50. Robinson, E.A.: Symbolic dynamics and tilings of \({\mathbb{R}}^d\). Proc. Sympos. Appl. Math. 20, 81–119 (2004)

    Article  Google Scholar 

  51. Robinson Jr, E.A., Sahin, A.A.: Rank-one \({\mathbb{Z}}^d\) actions and directional entropy. Ergod. Theory Dyn. Syst. 31, 285–299 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. Robinson, R.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  53. Rudolph, D.J.: The second centralizer of a Bernoulli shift is just its powers. Israel J. Math. 29(2–3), 167–178 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  54. Sadun, L.: Tiling spaces are inverse limits. J. Math. Phys. 44(11), 5410–5414 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  55. Sadun, L.: Topology of tiling spaces. University Lecture Series 46. American Mathematical Society (2008)

  56. Sadun, L.: Exact regularity and the cohomology of tiling spaces. Ergod. Theory Dyn. Syst. 31, 1819–1834 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  57. Solomyak, B.: Dynamics of self-similar tilings. Ergod. Theory Dyn. Syst. 17, 695–738, (1997). Errata. Ergod. Theory Dyn. Syst. 19, 1685 (1999)

  58. Solomyak, B.: Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20(2), 265–279 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Mike Boyle, Lewis Bowen, Kariane Calta, Amos Nevo, E. Arthur Robinson, Jr. and Boris Solomyak for helpful discussions. The work of L.S. is partially supported by NSF Grants DMS-0701055 and DMS-1101326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Sadun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, N.P., Sadun, L. Fusion: a general framework for hierarchical tilings of \(\mathbb{R }^d\) . Geom Dedicata 171, 149–186 (2014). https://doi.org/10.1007/s10711-013-9893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-013-9893-7

Keywords

Mathematics Subject Classification (1991)

Navigation