Skip to main content
Log in

Lower order tensors in non-Kähler geometry and non-Kähler geometric flow

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In recent years, Streets and Tian introduced a series of curvature flows to study non-Kähler geometry. In this paper, we study how to construct the second-order curvature flows in a uniform way, under some natural assumptions which hold in Streets and Tian’s works. As a result, by classifying the lower order tensors, we classify the second-order curvature flows in almost Hermitian, almost Kähler, and Hermitian geometries in certain sense. In particular, the Symplectic Curvature Flow is the unique way to generalize Ricci Flow on almost Kählermanifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boling, J.: Homogeneous solutions of pluriclosed flow on closed complex surfaces. arXiv:1404.7106 (2014)

  2. http://mathoverflow.net/questions/72906/how-to-deduce-this-equation-for-a-4-dim-almost-kahler-manifold

  3. Cao, H.D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dai, S.: A curvature flow unifying symplectic curvature flow and pluriclosed flow. Pac. J. Math. 277(2), 287–311 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Enrietti, N.: Static SKT metrics on Lie groups. Manuscripta Math. 140(3–4), 557–571 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Enrietti, N., Fino, A., Vezzoni, L.: The pluriclosed flow on nilmanifolds and Tamed symplectic forms. J. Geom. Anal. 25(2), 883–909 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fernández-Culma, E.: Soliton almost Kähler structures on 6-dimensional nilmanifolds for the symplectic curvature flow. J. Geom. Anal. 25(4), 2736–2758 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fino, A., Vezzoni, L.: Special Hermitian metrics on compact solvmanifolds. J. Geom. Phys. 91, 40–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gauduchon, P.: Hermitian connections and Dirac operators. Bollettino della Unione Matematica Italiana-B 2, 257–288 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Gill, M.: Convergence of the parabolic complex Monge-Amp ére equation on compact Hermitian manifolds. Commun. Anal. Geom. 19(2), 277–303 (2011)

    Article  MATH  Google Scholar 

  11. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Lauret, J.: Curvature flows for almost-Hermitian Lie groups. Trans. Am. Math. Soc. 367, 7453–7480 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lauret, J., Will, C.: On the symplectic curvature flow for locally homogeneous manifolds. arXiv:1405.6065 (2014)

  14. Lê, H.V., Wang, G.F.: Anti-complexified Ricci flow on compact symplectic manifolds. J. Reign Angew. Math. 530, 17–31 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds. Ann. Math. 65(3), 391–404 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159 (2002)

  17. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math/0303109 (2003)

  18. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math/0307245 (2003)

  19. Pook, J.: Homogeneous and locally homogeneous solutions to symplectic curvature flow. arXiv:1202.1427 (2012)

  20. Smith, D.: Stability of the almost Hermitian curvature flow. Thesis (Ph.D.), Michigan State University, pp. 60 (2013)

  21. Streets, J.: Pluriclosed flow on generalized Kähler manifolds with split tangent bundle. arXiv:1405.0727 (2014)

  22. Streets, J.: Pluriclosed flow, Born-Infeld geometry, and rigidity results for generalized Kähler manifolds. Comm. Partial Differ. Equ. 41(2), 318–374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Streets, J.: Generalized Kähler–Ricci flow and the classification of nondegenerate generalized Kähler surfaces. arXiv:1601.02981 (2016)

  24. Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 16, 3101–3133 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Streets, J., Tian, G.: Regularity results for pluriclosed flow. Geom. Topol. 17(4), 2389–2429 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. 13(3), 601–634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Streets, J., Tian, G.: Symplectic curvature flow. J. Reine Angew. Math. 696, 143–185 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Streets, J., Tian, G.: Generalized K ähler geometry and the pluriclosed flow. Nucl. Phys. B 858(2), 366–376 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Streets, J., Warren, M.: Evans–Krylov estimates for a nonconvex Monge–Ampère  equation. arXiv:1410.2911 (2014)

  30. Tossati, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern-Ricci form. J. Differ. Geom. 99(1), 125–163 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Vezzoni, L.: On Hermitian curvature flow on almost complex manifolds. Differ. Geom. Appl. 29(5), 709–722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to express his gratitude to his advisor Gang Tian, for suggesting the author to study the problems in the non-Kähler geometric flow, especially the Symplectic Curvature Flow, and encouraging the author all the time and many helpful discussions. The author would also like to thank Jeffrey Streets for his helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Dai.

Appendix: Hermitian connection

Appendix: Hermitian connection

In this appendix, we review some basic results about Hermitian connection. For further study, one may refer [9].

Let \((g,J,\omega )\) be an almost Hermitian structure. Let D be Levi-Civita connection and \(\bigtriangledown \) be a linear connection. Let \(\bigtriangledown =D+A\), i.e., \(g(\bigtriangledown _{X}Y,Z)=g(D_{X}Y,Z)+A(X,Y,Z)\), where A is a 3-tensor.

Lemma 6.1

$$\begin{aligned} \bigtriangledown g=0\Leftrightarrow & {} A(X,Y,Z)+A(X,Z,Y)=0.\\ \bigtriangledown J=0\Leftrightarrow & {} A(X,JY,Z)+A(X,Y,JZ)+DJ(X,Y,Z)=0. \end{aligned}$$

Proof

$$\begin{aligned} \nabla g(X,Y,Z)= & {} Xg(Y,Z)-g(\nabla _{X}Y,Z)-g(Y,\nabla _{X}Z)\\= & {} Xg(Y,Z)-g(D_{X}Y,Z)-A(X,Y,Z)-g(Y,D_{X}Z)-A(X,Z,Y)\\= & {} -\,A(X,Y,Z)-A(X,Z,Y).\\ g(\nabla J(X,Y),Z)= & {} g(\nabla _{X}(JY)-J\nabla _{X}Y,Z)\\= & {} g(D_{X}(JY),Z)+A(X,JY,Z)-g(JD_{X}Y,Z)+A(X,Y,JZ)\\= & {} DJ(X,Y,Z)+A(X,JY,Z)+A(X,Y,JZ). \end{aligned}$$

\(\square \)

If \(\bigtriangledown g=\bigtriangledown J=0\), then, we say that \(\bigtriangledown \) is an Hermitian connection. In general, Hermitian connection is not unique. Naturally, we assume A is defined from \((g,J,\omega )\). Since connection is of first order, we require A is of first order. In addition, since D is of even type, we require A is of even type. In a word, we assume \(A=J*DJ\).

Lemma 6.2

Let \(\bigtriangledown \) be an Hermitian connection.

In almost Hermitian setting,

$$\begin{aligned} A=\frac{1}{2}DJ(X,JY,Z)+\frac{t}{4}(DJ(JY,Z,X)+DJ(JZ,X,Y)-DJ(Y,Z,JX)-DJ(Z,X,JY)). \end{aligned}$$

In Hermitian setting,

$$\begin{aligned} A=\frac{1}{2}DJ(X,JY,Z)-\frac{t}{2}(DJ(Y,Z,JX)+DJ(Z,X,JY)). \end{aligned}$$

In almost Kählersetting,

$$\begin{aligned} A=\frac{1}{2}DJ(X,JY,Z). \end{aligned}$$

Proof

Suppose \((g,J,\omega )\) is an almost Hermitian structure. From our assumption and Lemma 2.5, we have

$$\begin{aligned} A(X,Y,Z)= & {} a_{1}DJ(X,Y,JZ)+a_{2}DJ(Y,Z,JX)+a_{3}DJ(Z,X,JY)\\&+a_{4}DJ(JX,Y,Z)+a_{5}DJ(JY,Z,X)+a_{6}DJ(JZ,X,Y). \end{aligned}$$

From Lemma 6.1, \(\nabla \) is Hermitian if and only if

$$\begin{aligned} 0= & {} a_{1}DJ(X,Y,JZ)+a_{2}DJ(Y,Z,JX)+a_{3}DJ(Z,X,JY)\\&+\,a_{4}DJ(JX,Y,Z)+a_{5}DJ(JY,Z,X)+a_{6}DJ(JZ,X,Y)\\&+\,a_{1}DJ(X,Z,JY)+a_{2}DJ(Z,Y,JX)+a_{3}DJ(Y,X,JZ)\\&+\,a_{4}DJ(JX,Z,Y)+a_{5}DJ(JZ,Y,X)+a_{6}DJ(JY,X,Z).\\ -DJ(X,Y,Z)= & {} a_{1}DJ(X,JY,JZ)+a_{2}DJ(JY,Z,JX)-a_{3}DJ(Z,X,Y)\\&+\,a_{4}DJ(JX,JY,Z)-a_{5}DJ(Y,Z,X)+a_{6}DJ(JZ,X,JY)\\&-\,a_{1}DJ(X,Y,Z)+a_{2}DJ(Y,JZ,JX)+a_{3}DJ(JZ,X,JY)\\&+\,a_{4}DJ(JX,Y,JZ)+a_{5}DJ(JY,JZ,X)-a_{6}DJ(Z,X,Y). \end{aligned}$$

To simplify the above equations, we have

$$\begin{aligned} 0= & {} (a_{2}-a_{3})(DJ(Y,Z,JX)-DJ(Z,X,JY))+(a_{5}-a_{6})(DJ(JY,Z,X)-DJ(JZ,X,Y)).\\ 0= & {} (1-2a_{1})DJ(X,Y,Z)+2a_{4}DJ(JX,JY,Z)\\&+(a_{2}+a_{5})(DJ(JY,Z,JX)-DJ(Y,Z,X))+(a_{3}+a_{6})(DJ(JZ,X,JY)-DJ(Z,X,Y)). \end{aligned}$$

Therefore, in almost Hermitiansetting, \(a_{1}=\frac{1}{2}\), \(a_{4}=0\), \(a_{2}=a_{3}=-a_{5}=-a_{6}=-\frac{t}{4}\).

In Hermitian setting, from Lemma 2.6,

$$\begin{aligned} A(X,Y,Z)=(a_{1}-a_{4})DJ(X,Y,JZ)+(a_{2}-a_{5})DJ(Y,Z,JX)+(a_{3}-a_{6})DJ(Z,X,JY), \end{aligned}$$

and the equations are

$$\begin{aligned} 0= & {} (a_{2}-a_{5}-a_{3}+a_{6})(DJ(Y,Z,JX)-DJ(Z,X,JY))\\ 0= & {} (1-2a_{1}+2a_{4})DJ(X,Y,Z). \end{aligned}$$

Therefore, \(a_{1}-a_{4}=\frac{1}{2}\), \(a_{2}-a_{5}=a_{3}-a_{6}=-\frac{t}{2}\).

In almost Kählersetting, from Lemma 2.7,

$$\begin{aligned} A(X,Y,Z)=(a_{1}+a_{4})DJ(X,Y,JZ)+(a_{2}+a_{5})DJ(Y,Z,JX)+(a_{3}+a_{6})DJ(Z,X,JY), \end{aligned}$$

and the equations are

$$\begin{aligned} 0= & {} (a_{2}+a_{5}-a_{3}-a_{6})(DJ(Y,Z,JX)-DJ(Z,X,JY))\\ 0= & {} (1-2a_{1}-2a_{4})DJ(X,Y,Z)-(2a_{2}+2a_{5})DJ(Y,Z,X)-(2a_{3}+2a_{6})DJ(Z,X,Y). \end{aligned}$$

Therefore, \(a_{2}+a_{5}=a_{3}+a_{6}\), \(a_{1}+a_{4}=a_{2}+a_{5}+\frac{1}{2}\). Then

$$\begin{aligned} A(X,Y,Z)=\frac{1}{2}DJ(X,Y,JZ). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S. Lower order tensors in non-Kähler geometry and non-Kähler geometric flow. Ann Glob Anal Geom 50, 395–418 (2016). https://doi.org/10.1007/s10455-016-9518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-016-9518-0

Keywords

Navigation