Skip to main content

Advertisement

Log in

The 12.4 ka Upper Apoyeque Tephra, Nicaragua: stratigraphy, dispersal, composition, magma reservoir conditions and trigger of the plinian eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Upper Apoyeque Tephra (UAq) was formed by a rhyodacitic plinian eruption in west-central Nicaragua at 12.4 ka BP. The fallout tephra was dispersed from a progressively rising plinian eruption column that became exposed to different wind speeds and directions at different heights in the stratosphere, leading to an asymmetric tephra fan with different facies in the western and southern sector. Tephra dispersal data integrated with geochemical compositions of lava flows in the area facilitate delimitation of the source vent to the south of Chiltepe Peninsula. UAq, Lower Apoyeque Tephra, Apoyeque Ignimbrite, and two lava lithic clasts in San Isidro Tephra together form a differentiation trend distinct from that of the younger tephras and lavas at Chiltepe Volcanic Complex in a TiO2 versus K2O diagram, compositionally precluding a genetic relationship of UAq with the present-day Apoyeque stratovolcano. Apoyeque Volcano in its present shape did not exist at the time of the UAq eruption. The surface expression of the UAq vent is now obscured by younger eruption products and lake water. Pressure-temperature constraints based on mineral-melt equilibria and fluid inclusions in plagioclase indicate at least two magma storage levels. Clinopyroxenes crystallised in a deep crustal reservoir at ∼24 km depth as inferred from clinopyroxene-melt inclusion pairs. Chemical disequilibrium between clinopyroxenes and matrix glasses indicates rapid magma ascent to the shallower reservoir at ∼5.4 km depth, where magnesiohornblendes and plagioclase fractionated at a temperature of ∼830 °C. Water concentrations were ∼5.5 wt.% as derived from congruent results of amphibole and plagioclase-melt hygrometry. The eruption was triggered by injection of a hotter, more primitive melt into a water-supersaturated reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abers GA, Plank T, Hacker BR (2003) The wet Nicaraguan slab. Geophys Res Lett 30:1098. doi:10.1029/2002GL015649

  • Andersen DJ, Lindsley DH (1985) New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. EOS Trans Am Geophys Union 66:416

    Google Scholar 

  • Avellán DR, Macías JL, Pardo N, Scolamacchia T, Rodriguez D (2012) Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa Volcanic Field, western Managua, Nicaragua. J Volcanol Geotherm Res 213–214:51–71. doi:10.1016/j.jvolgeores.2011.11.002

  • Avellán DR, Macías JL, Sosa-Ceballos G, Velásquez G (2014) Stratigraphy, chemistry, and eruptive dynamics of the 12.4 ka plinian eruption of Apoyeque volcano, Managua, Nicaragua. Bull Volcanol 76:792. doi:10.1007/s00445-013-0792-4

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. Am Mineral 73:57–61

    Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23. doi:10.1016/S0009-2541(02)00268-1

    Article  Google Scholar 

  • Bice DC (1985) Quaternary volcanic stratigraphy of Managua, Nicaragua: correlation and source assignment for multiple overlapping plinian deposits. Geol Soc Am Bull 96:553–566

    Article  Google Scholar 

  • Borisov AA, Shapkin AI (1990) A new empirical equation rating Fe3+/Fe2+ in magmas to their composition, oxygen fugacity, and temperature. Geochem Int 27:111–116

  • Burkert C (2007) Die geologische Entwicklungsgeschichte des Xiloá Maars (Nicaragua). Diploma thesis, Christian-Albrechts Universität, Kiel, p 106

    Google Scholar 

  • Burkert C, Hansteen T, Freundt A, Kutterolf S (2012) Along-arc variations in magma chamber depths of large explosive eruptions in Central America: constraints from fluid inclusions and mineralogy. Abstract EMC2012-622. European Mineralogical Conference 1, Frankfurt/Main

    Google Scholar 

  • Carey S, Sigurdsson H (1989) The intensity of plinian eruptions. Bull Volcanol 51:28–40

    Article  Google Scholar 

  • Carey RJ, Houghton BF, Thordarson T (2010) Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland. Bull Volcanol 72:259–278. doi:10.1007/s00445-009-0317-3

    Article  Google Scholar 

  • Carr MJ (1984) Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. J Volcanol Geotherm Res 20:231–252

    Article  Google Scholar 

  • Carr MJ, Feigenson MD, Bennett EA (1990) Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American Volcanic Arc. Contrib Mineral Petrol 105:369–380

    Article  Google Scholar 

  • Carr MJ, Feigenson MD, Patino LC, Walker JA (2003) Volcanism and geochemistry in Central America: progress and problems. In: Eiler J (ed) Inside the subduction factory, vol 138., pp 153–174

    Chapter  Google Scholar 

  • Carr MJ, Saginor I, Alvarado G, Bolge LL, Lindsay FN, Turrin B, Feigenson MD, Swisher CC III (2007) Element fluxes from the volcanic front of Nicaragua and Costa Rica. Geochem Geophys Geosyst 8:Q06001. doi:10.1029/2006GC001396

    Article  Google Scholar 

  • Danyushevsky LV, Plechov P (2011) Petrolog 3: Integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12/7. doi:10.1029/2011GC003516

  • DeMets C (2001) A new estimate for present-day Cocos-Caribbean Plate motion: Implications for slip along the Central American Volcanic Arc. Geophys Res Lett 28:4043–4046

  • Dungan MA, Rhodes JM, Long PE, Blanchard DP, Brannon JC, Rodgers (1978) The petrology and geochemistry of basalts from site 396, legs 45 and 46 of the deep sea drilling project. In: Initial Reports of the Deep Sea Drilling Project 46. US Government Printing Office, Washington, pp 89–113

    Google Scholar 

  • Erdmann S, Martel C, Pichavant M, Kushnir A (2014) Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib Mineral Petrol 167:1016. doi:10.1007/s00410-014-1016-4

    Article  Google Scholar 

  • Feigenson MD, Carr MJ (1986) Positively correlated Nd and Sr isotope ratios of lavas from the Central American volcanic front. Geology 14:79–82

    Article  Google Scholar 

  • Feigenson MD, Carr MJ, Maharaj SV, Juliano S, Bolge LL (2004) Lead isotope composition of Central American volcanoes: Influence of the Galapagos plume. Geochem Geophys Geosyst 5:Q06001. doi:10.1029/2003GC000621

  • Fierstein J, Hildreth W (1992) The plinian eruptions of 1912 at Novarupta, Katmai, Alaska. Bull Volcanol 54:646–684

    Article  Google Scholar 

  • Fierstein J, Houghton BF, Wilson CJN, Hildreth W (1997) Complexities of plinian fall deposition at vent: an example from the 1912 Novarupta eruption (Alaska). J Volcanol Geotherm Res 76:215–227

    Article  Google Scholar 

  • Freundt A, Kutterolf S, Schmincke HU, Hansteen THH, Wehrmann H, Pérez W, Strauch W, Navarro M (2006a): Volcanic hazards in Nicaragua: Past, present and future. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds.): Volcanic hazards in Central America. Geol Soc Am Spec Pap 412:141-165. doi:10.1130/2006.2412(08)

  • Freundt A, Kutterolf S, Wehrmann H, Schmincke HU, Strauch W (2006b) Eruption of the dacite to andesite zoned Mateare Tephra, and associated tsunamis in Lake Managua, Nicaragua. J Volcanol Geotherm Res 149:103–123. doi:10.1016/j.jvolgeores.2005.06.001

    Article  Google Scholar 

  • Freundt A, Strauch W, Kutterolf S, Schmincke HU (2007) Volcanogenic tsunamis in lakes: examples from Nicaragua and general implications. Pure Appl Geophys 164:527–545. doi:10.1007/s00024-006-0178-z

    Article  Google Scholar 

  • Freundt A, Grevemeyer I, Rabbel W, Hansteen THH, Hensen C, Wehrmann H, Kutterolf S, Halama R, Frische M (2014) Volatile (H2O, CO2, Cl, S) budget of the Central American subduction zone. Int J Earth Sci 103(7):2101–2127. doi:10.1007/s00531-014-1001-1

    Article  Google Scholar 

  • Funk J, Mann P, McIntosh K, Stephens J (2009) Cenozoic tectonics of the Nicaraguan depression, Nicaragua, and Median Trough, El Salvador, based on seismic reflection profiling and remote-sensing data. Geol Soc Am Bull 121:1491–1521. doi: 10.1130/B26428.1

  • Hildreth W, Fierstein J (2012) The Novarupta-Katmai eruption of 1912—largest eruption of the twentieth century; centennial perspectives. U.S. Geological Survey Professional Paper 1791, 259 p. Available at http://pubs.usgs.gov/pp/1791/

  • Hoernle K, Tilton G, Le Bas MJ, Duggen S, Garbe-Schönberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Mineral Petrol 142:520–542. doi:10.1007/s004100100308

    Article  Google Scholar 

  • Hoernle K, Abt DL, Fischer KM, Nichols H, Hauff F, Abers G, van den Bogaard P, Alvarado G, Protti JM, Strauch W (2008) Geochemical and geophysical evidence for arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature 451:1094–1097. doi:10.1038/nature06550

    Article  Google Scholar 

  • Houghton BF, Carey RJ, Rosenberg MD (2014) The 1800a Taupo eruption: “Ill wind” blows the ultraplinian event down to Plinian. Geology. doi:10.1130/G35400.1

  • Kutterolf S, Freundt A, Pérez W, Wehrmann H, Schmincke HU (2007) Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua. J Volcanol Geotherm Res 163:55–82. doi:10.1016/j.jvolgeores.2007.02.006

    Article  Google Scholar 

  • Kutterolf S, Freundt A, Pérez W, Mörz T, Schacht U, Wehrmann H, Schmincke HU (2008a) Pacific offshore record of plinian arc volcanism in Central America: 1. Along-arc correlations. Geochem Geophys Geosyst 9/2:Q02S01. doi:10.1029/2007GC001631

  • Kutterolf S, Freundt A, Pérez W (2008b) The Pacific offshore record of Plinian arc volcanism in Central America: 2. Tephra volumes and erupted masses. Geochem Geophys Geosys 9/2:Q02S02. doi:10.1029/2007GC001791

  • Kutterolf S, Freundt A, Burkert C (2011) Eruptive history and magmatic evolution of the 1.9 kyr Plinian dacitic Chiltepe Tephra form Apoyeque volcano in west-central Nicaragua. Bull Volcanol 73(3):811–831. doi:10.1007/s00445-011-0457-0

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittiker EJW, Youzhi G (1977) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can Mineral 35:219–246

    Google Scholar 

  • Lepage LD (2003) ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry. Comput Geosci 29:673–678

    Article  Google Scholar 

  • Lücke OH (2014) Moho structure of Central America based on three-dimensional lithospheric density modelling of satellite-derived gravity data. Int J Earth Sci 103(7):1733–1745. doi:10.1007/s00531-012-0787-y

    Article  Google Scholar 

  • Molina JF, Moreno JA, Castro A, Rodríguez C, Fershtater GB (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos 232:286–305. doi:10.1016/j.lithos.2015.06.027

  • Mollo S, Putirka K, Misiti V, Soligo M, Scarlato P (2013) A new test for equilibrium-based on clinopyroxene-melt pairs; clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem Geol 352:92–100

    Article  Google Scholar 

  • Moore G, Vennemann T, Carmichael ISE (1998) An empirical model the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

    Google Scholar 

  • Nielsen RL and Drake MJ (1979) Pyroxene-melt equilibria. Geochim Cosmochim Acta 43:1259–1272. doi:10.1016/0016-7037(79)90117-0

  • Patino LC, Carr MJ, Feigenson MD (1997) Cross-arc geochemical variations in volcanic fields in Honduras, CA: progressive changes in source with distance from the volcanic front. Contrib Mineral Petrol 129:341–351

    Article  Google Scholar 

  • Patino LC, Carr MJ, Feigenson MD (2000) Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138:265–283

    Article  Google Scholar 

  • Pérez W, Freundt A (2006) The youngest highly explosive basaltic eruptions from Masaya Calder (Nicaragua): stratigraphy and hazard assessment. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds.): Volcanic hazards in Central America. Geol Soc Am Spec Pap 412:189-1207. doi: 10.1130/2006.2412(10)

  • Pérez W, Freundt A, Kutterolf S, Schmincke HU (2009) The Masaya Triple Layer: a 2100 year old basaltic multi-episode Plinian eruption from the Masaya Caldera Complex (Nicaragua). J Volcanol Geotherm Res 179:191–205. doi:10.1016/j.jvolgeores.2008.10.015

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley F (eds) Minerals, Inclusions, and Volcanic Processes. Rev Mineral Geochem 69:61–120. doi:10.2138/rmg.2008.69.3

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Mineral 101:841–858. doi:10.2138/am-2016-5506

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66. doi:10.1007/s00410-009-0465-7

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Stormer JC (1983) The effects of recalculation on the estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. Am Mineral 68:586–594

    Google Scholar 

  • Sussman D (1985) Apoyo Caldera, Nicaragua: a major Quaternary silicic eruptive center. J Volcanol Geotherm Res 24:249–282. doi:10.1016/0377-0273(85)90072-1

  • Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7:Q05017. doi:10.1029/2005GC001045

    Article  Google Scholar 

  • van Avendonk HJA, Holbrook WS, Lizarralde D, Denyer P (2011) Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica. Geochem Geophys Geosyst 12/6, Q06009. doi:10.1029/2011GC003592

  • van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res 116:B01401. doi:10.1029/2010JB007922

    Google Scholar 

  • Vidal CM, Komorowski J-C, Métrich N, Pratomo I, Kartadinata N, Prambada O, Michel A, Carazzol G, Lavigne F, Rodysill J, Fontijn K (2015) Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia). Bull Volcanol 77:73. doi:10.1007/s00445-015-0960-9

    Article  Google Scholar 

  • Walker JA, Carr MJ, Feigenson MD, Kalamarides RI (1990) The petrogenetic significance of interstratified high- and low-Ti basalts in central Nicaragua. J Petrol 31:1141–1164. doi:10.1093/petrology/31.5.1141

  • Wehrmann H, Bonadonna C, Houghton BF, Freundt A, Kutterolf S (2006) Fontana Tephra: a basaltic plinian eruption in Central Nicaragua. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds.): Volcanic Hazards in Central America. Geologic Society of America special paper 412: 209-223. doi:10.1130/2006.2412(11)

  • Wehrmann H, Hoernle K, Garbe-Schönberg D, Jacques G, Mahlke J, Schumann K (2014) Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas. Int J Earth Sci 103(7):1929–1944. doi:10.1007/s00531-013-0917-1

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Hans-Ulrich Schmincke, Wendy Planert-Pérez, Michael Weiss, Cosima Burkert, Juanita Rausch, Bernard Grobéty, Thor Hansteen and personnel from the Instituto Nicaragüense de Estudios Territoriales (INETER) for scientific and logistic support and good times in the field. Mario Thöner assisted with the electron microprobe analyses; Dagmar Rau helped with the XRF analyses. We acknowledge comments from two anonymous reviewers that improved this paper. Credit is due to Judy Fierstein for helpful comments and for the editorial handling of the manuscript. This paper is contribution No. 277 of Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones”, funded by the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Wehrmann.

Additional information

Editorial responsibility: J. Fierstein

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

Outcrop locations of UAq: UTM coordinates (zone 16P), deposits’ thicknesses, sizes of the largest juvenile and lithic clasts determined as the average diameter of the five largest clasts, the diameter in turn being the average of the three axes. (XLS 15 kb)

ESM 2

Details on analytical settings of the electron microprobe for glass and mineral analyses. (PDF 35.3 kb)

ESM 3

Xiloá Tephra at location A100 (Fig. 1a) with the typical structure in the Mateare region, comprising stratified basal ash unit, central poorly sorted lapilli unit and top ash unit. The tephra mantles the topography and only the basal stratified ash contains small downstream-dipping cross-bedding structures indicative of low-energy lateral transport. There is no evidence for significant erosion at the basal contact or for massive entrainment of coarse UAq pumice. Lower right shows top part of UAq-W underneath paleosol. (PDF 177 kb)

ESM 4

Major element compositions of matrix glasses of UAq-W and UAq-S, normalised to 100 % volatile-free. *Original analytical totals. (XLS 139 kb)

ESM 5

Matrix glass compositions shown by (a) Al2O3, (b) FeO, (c) MgO, and (d) CaO versus SiO2 diagrams as in Fig. 8, displaying the full compositional range of the basal ashes (unit A of UAq-W) and their stratigraphically upwards increasing degree of differentiation. The symbols with yellow background mark the ash particles belonging to the UAq system domain, while the symbols without background colour show compositions of shards entrained from older material. Bulk-pumice compositions of IgAq (pink-blue triangles) plot onto both glass compositional domains observed in UAq unit A. Green field indicates the composition of the main pumice section of UAq. (PDF 299 kb)

ESM 6

Major element compositions of (i) melt inclusions in pyroxenes of UAq-W and UAq-S, along with the compositions of their host crystals, their correction for post-entrapment crystallisation and corresponding magma reservoir conditions; (ii) melt inclusions in plagioclase with their host crystals; (iii) hornblende, plagioclase, iron-titanium oxide, apatite, additional clino- and orthopyroxene phenocrysts in UAq-W and UAq-S; including (iv) data on the xenocrysts of the admixed melt in UAq-W (plagioclase, clinopyroxene, olivine, iron-titanium oxides). (XLS 4185 kb)

ESM 7

Additional details addressing the arguments Avellán et al. (2014) present to support their non-correlation of UAq-S and UAq-W, including compositional plots of plagioclase phenocrysts (histogram of An-contents in Fig ESM7-1) and MgO and TiO2 versus Al2O3 for titanomagnetite crystals (Fig. ESM7-2), as well as compositional relationships of the lavas in the region with lithic clasts in UAq. (PDF 256 kb)

ESM 8

Mg-number of (a) clinopyroxenes and (b) orthopyroxenes compared to that of matrix glasses and melt inclusions of UAq-S, after Roeder and Emslie (1970) and Dungan et al. (1978), to evaluate mineral-melt equilibria. Both mineral phases show strong disequilibrium between their rims and the adjacent matrix glasses (filled symbols). In contrast, the open symbols represent fractionation-corrected melt inclusions in or close to equilibrium with their host crystals measured directly next to the inclusion (PDF 131 kb)

ESM 9

Bulk-rock major element compositions of tephras and lavas of the Chiltepe Formation. Oxide concentrations recalculated to 100 % anhydrous. Sum is XRF analytical total without LOI (XLS 1332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehrmann, H., Freundt, A. & Kutterolf, S. The 12.4 ka Upper Apoyeque Tephra, Nicaragua: stratigraphy, dispersal, composition, magma reservoir conditions and trigger of the plinian eruption. Bull Volcanol 78, 44 (2016). https://doi.org/10.1007/s00445-016-1036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1036-1

Keywords

Navigation