Skip to main content

Advertisement

Log in

Spatio-volumetric hazard estimation in the Auckland volcanic field

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The idea of a volcanic field ‘boundary’ is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a ‘hard’ boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the ‘gaps’ between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen SR, Smith IEM (1994) Eruption styles and volcanic hazard in the Auckland Volcanic Field, New Zealand. Geosci Rep Shizuoka Uni 20:5–14

    Google Scholar 

  • Barde-Cabusson S, Gottsmann J, Marti J, Bolos X, Camacho AG, Geyer A, Ll Planaguma, Ronchin E, Sanchez A (2014) Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements. Bull Volcanol 76:788

    Article  Google Scholar 

  • Bebbington M (2008) Incorporating the eruptive history in a stochastic model for volcanic eruptions. J Volcanol Geotherm Res 175:325–333

    Article  Google Scholar 

  • Bebbington M (2010) Trends and clustering in the onsets of volcanic eruptions. J Geophys Res 115:B01203

    Google Scholar 

  • Bebbington MS (2013a) Assessing spatio-temporal eruption forecasts in a monogenetic volcanic field. J Volcanol Geotherm Res 252:14–28

    Article  Google Scholar 

  • Bebbington MS (2013b) Models for temporal volcanic hazard. Statistics in Volcanology 1:1–24

    Article  Google Scholar 

  • Bebbington MS (2014) Long-term forecasting of volcanic explosivity. Geophys J Int 197:1500–1515

    Article  Google Scholar 

  • Bebbington M., Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72

    Article  Google Scholar 

  • Bebbington MS, Lai CD (1996) On nonhomogeneous models for volcanic eruptions. Math Geol 28:585–600

    Article  Google Scholar 

  • Bebbington MS, Marzocchi W (2011) Stochastic models for earthquake triggering of volcanic eruptions. J Geophys Res 116:B05204. doi:10.1029/2010JB008114

    Google Scholar 

  • Bebbington M, Cronin S, Chapman I, Turner M (2008) Quantifying volcanic ash fall hazard to electricity infrastructure. J Volcanol Geotherm Res 177:1055–1062

    Article  Google Scholar 

  • Becerril L, Cappello A, Galindo I, Neri M, Del Negro C (2013) Spatial probability distribution of future volcanic eruptions at El Hierro Island. J Volcanol Geotherm Res 257:21–30

    Article  Google Scholar 

  • Burt ML, Wadge G, Scott WA (1994) Simple stochastic modelling of the eruption history of a basaltic volcano: Nyamuragira, Zaire. Bull Volcanol 56:87–97

    Article  Google Scholar 

  • Cappello A, Neri M, Acocella V, Gallo G, Vicari A, Del Negro C (2012) Spatial vent opening probability map of Etna volcano (Sicily, Italy). Bull Volcanol 74:2083–2094

    Article  Google Scholar 

  • Cappello A, Bilotta G, Neri M, Del Negro C (2013) Probabilistic modeling of future volcnic eruptions at Mount Etna. J Geophys Res 118:1925–1935

    Article  Google Scholar 

  • Cebria JM, Martin-Escora C, Lopez-Ruiz J, Moran-Zenteno DJ, Martiny BM (2011) Numerical recognition of alignments in monogenetic areas: examples from the Michoacan-Guanajuato Volcanic Field in Mexico and Calatrava in Spain. J Volcanol Geotherm Res 201:73–82

    Article  Google Scholar 

  • Christensen R, Johnson W, Branscum A, Hanson TE (2011) Bayesian Ideas and Data Analysis. CRC Press

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial realtionships in populations. Ecology 35:445– 453

    Article  Google Scholar 

  • Connor CB (1990) Cinder cone clustering in the TransMexican Volcanic Belt: implications for structural and petrologic models. J Geophys Res 95:19395–19405

    Article  Google Scholar 

  • Connor CB, Connor LJ (2009) Estimating spatial density with kernel methods. In: Connor C B, Chapman N A, Connor L J (eds) Volcanic and tectonic hazard assessment for nuclear facilities. Cambridge University Press, Cambridge, pp 346–368

  • Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H, et al. (eds) Encyclopedia of Volcanoes. Academic Press, New York, pp 331–343

  • Connor CB, Hill BE (1995) Three nonhomogeneous Poisson models for the probability of basaltic volcanism: application to the Yucca Mountain region, Nevada. J Geophys Res 100:10107– 10125

    Article  Google Scholar 

  • Connor CB, Condit CD, Crumpler LS, Aubele JC (1992) Evidence of regional structural controls on vent distribution: Springerville Volcanic Field, Arizona. J Geophys Res 97:12349–12359

    Article  Google Scholar 

  • Conway FM, Connor CB, Hill BE, Condit CD, Mullaney K, Hall CM (1998) Recurrence rates of basaltic volcanism in SP cluster, San Francisco volcanic field, Arizona. Geology 26:655–658

    Article  Google Scholar 

  • Cronin S, Bebbington M, Lai CD (2001) A probabilistic assessment of eruption recurrence on Taveuni volcano, Fiji. Bull Volcanol 63:274–288

    Article  Google Scholar 

  • Duong T (2007) ks: kernel density estimations and kernel discriminant analysis for multivariate data in R. J Statist Software 21:116

    Google Scholar 

  • Duong T, Hazelton ML (2003) Plug-in bandwidth selectors for bivariate kernel density estimation. J Nonparametric Statist 15:17–30

    Article  Google Scholar 

  • El-Difrawy MA, Runge M, Moufti MR, Cronin SJ, Bebbington M (2013) A first hazard analysis of the Quaternary Harrat Al-Madinah volcanic field, Saudi Arabia. J Volcanol Geotherm Res 267:39–46

    Article  Google Scholar 

  • Garcia-Aristizabal A, Marzocchi W, Fujita E (2012) A Brownian model for recurrent volcanic eruptions: an application to Miyakejima volcano (Japan). Bull Volcanol 74:545–558

    Article  Google Scholar 

  • Germa A, Connor LJ, Canon-Tapia E, Le Corvec N (2013) Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents. Bull Volcanol 75:782

  • Green R, Bebbington MS, Cronin SJ, Jones G (2013) Geochemical precursors for eruption repose length. Geophys J Int 193:855– 873

    Article  Google Scholar 

  • Hayward BW, Kenny JA, Grenfell HR (2011) More volcanoes recognised in Auckland Volcanic Field. Geosci Soc NZ Newsletter 5:11–16

    Google Scholar 

  • Hayward BW (2011) Volcanoes of Auckland. Auckland University Press, Maitland G

    Google Scholar 

  • Hazelton ML, Marshall JC (2009) Linear boundary kernels for bivariate density estimation. Statist Prob Lett 79:999–1003

    Article  Google Scholar 

  • Hill BE, Connor CB, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Amer Bull 110:1231–1241

    Article  Google Scholar 

  • Ho C-H (1991) Nonhomogeneous Poisson model for volcanic eruptions. Math Geol 23:167–173

    Article  Google Scholar 

  • Jaquet O, Lantuejoul C, Goto J (2012) Probabilistic estimation of long-term volcanic hazard with assimilation of geophysics and tectonic data. J Volcanol Geotherm Res 235-236:29–36

    Article  Google Scholar 

  • Kawabata E, Cronin SJ, Bebbington MS, Moufti MR, El-Masry N, Wang T (2015) The AD1256 Al-Madinah eruption, Saudi Arabia: identifying multiple eruption phases from a compound tephra blanket. Bull Volcanol 77:6

    Article  Google Scholar 

  • Kereszturi G, Procter J, Cronin SJ, Nemeth K, Bebbington M, Lindsay J (2012) LiDAR-based quantification of lava flow susceptibility in the City of Auckland (New Zealand). Remote Sensing of Environment 125:198–213

    Article  Google Scholar 

  • Kereszturi G, Nemeth K, Cronin SJ, Agustin-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 266:16–33

    Article  Google Scholar 

  • Kereszturi G, Cappello A, Ganci G, Procter J, Nemeth K, Del Negro C, Cronin SJ (2014a) Numerical simulation of basaltic lava flows in the Auckland Volcanic Field, New Zealand—implication for volcanic hazard assessment. Bull Volcanol 76:879

    Article  Google Scholar 

  • Kereszturi G, Nemeth K, Cronin SJ, Procter J, Agustin-Flores J (2014b) Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 286:101–115

    Article  Google Scholar 

  • Khachiyan LG (1996) Rounding of polytopes in the real number model of computation. Math Oper Res 21:307–320

    Article  Google Scholar 

  • Kiyosugi K, Connor CB, Zhao D, Connor LJ, Tanaka K (2010) Relationships between volcano distribution, crustal structure, and P-wave tomography: an example from the Abu Monogenetic Volcano Group, SW Japan. Bull Volcanol 72:331– 340

    Article  Google Scholar 

  • Le Corvec N, Sporli KB, Rowland J, Lindsay J (2013a) Spatial distribution and alignments of volcanic centres: clues to the formation of monogenetic volcanic fields. Earth Sci Rev 124:96– 114

    Article  Google Scholar 

  • Le Corvec N, Bebbington MS, Lindsay JM, McGee LE (2013b) Age, distance and geochemical evolution within a monogenetic volcanic field: analyzing patterns in the Auckland volcanic field eruption sequence. Geochem Geophys Geosyst 14:3648–3665

    Article  Google Scholar 

  • Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J, Sandri L (2010) Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand national disaster exercise ‘Ruaumoko’. Bull Volcanol 72:185–204

    Article  Google Scholar 

  • Lutz TM, Gutmann JT (1995) An improved method for determining and characterizing alignments of point-like features and its implications for the Pinacate volcanic field, Sonora, Mexico. J Geophys Res 100:17659–17670

    Article  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10:325–337

    Article  Google Scholar 

  • Magill CR, McAneney KJ, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland volcanic field event. Math Geol 37:227–242

    Article  Google Scholar 

  • Marti J, Felpeto A (2010) Methodology for the computation of volcanic susceptibility: an example for mafic and felsic eruptions on Tenerife (Canary Islands). J Volcanol Geotherm Res 195:69–77

    Article  Google Scholar 

  • Martin AJ, Umeda K, Connor CB, Weller JN, Zhao D, Takahashi M (2004) Modeling long-term volcanic hazards through Bayesian inference: an example from the Tohoku volcanic arc, Japan. J Geophys Res 109:B10208

    Article  Google Scholar 

  • Marzocchi W, Bebbington M (2012) Probabilistic eruption forecasting at short and long time scales. Bull Volcanol 74:1777–1805

    Article  Google Scholar 

  • Marzocchi W, Zaccarelli L (2006) A quantitative model for the time-size distribution of eruptions. J Geophys Res 111:B04204

    Google Scholar 

  • Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201

    Google Scholar 

  • Mendoza-Rosas AT, De La Cruz-Reyna S (2008) A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes. J Volcanol Geotherm Res 176:277–290

    Article  Google Scholar 

  • Mulargia F, Tinti S, Boschi E (1985) A statistical analysis of flank eruptions on Etna volcano. J Volcanol Geotherm Res 23:263–272

    Article  Google Scholar 

  • Muller HG, Stadtmuller U (1999) Multivariate boundary kernels and a ocntinuous least squares principle. J Roy Statist Soc Ser B 61:439–458

    Article  Google Scholar 

  • Richter DH, Eaton JP, Murata KJ, Ault WU, Krivoy HL (1970) Chronological narrative of the 1959-60 eruption of Kilauea volcano, Hawaii. US Geological Survey Professional Paper 537-E :73

  • Ripley BD (1979) Tests of ‘randomness’ for spatial point patterns. J Roy Statist Soc B 41:368–374

    Google Scholar 

  • Rubin DB (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann Statist 12:1151– 1172

    Article  Google Scholar 

  • Sato H, Taniguchi H (1997) Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: implications for energy partitioning. Geophys Res Lett 24:205–208

    Article  Google Scholar 

  • Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2012) Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand. Bull Volcanol 74:705–723

    Article  Google Scholar 

  • Self S, Sparks RSJ, Booth B, Walker GPL (1974) The 1973 Heimaey Strombolian scoria deposit, Iceland. Geol Mag 111:539– 548

    Article  Google Scholar 

  • Self S, Kienle J, Huot J-P (1980) Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65

    Article  Google Scholar 

  • Selva J, Costa A, Marzocchi W, Sandri L (2010) BET_VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy). Bull Volcanol 72:717–733

    Article  Google Scholar 

  • Selva J, Orsi G, Di Vito M, Marzocchi W, Sandri L (2012) Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy. Bull Volcanol 74:497–510

    Article  Google Scholar 

  • Smethurst L, James MR, Pinkerton H, Tawn JA (2009) A statistical analysis of eruptive activity on Mount Etna, Sicily. Geophys J Int 179:655–666

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J Roy Statist Soc, Ser B 64:583–639

    Article  Google Scholar 

  • Sporli K, Eastwood VR (1997) Elliptical boundary of an intraplate volcanic field, Auckland, New Zealand. J Volcanol Geotherm Res 79:169–179

    Article  Google Scholar 

  • Tadini A, Bonali FL, Corazzato C, Cortes JA, Tibaldi A, Valentine GA (2014) Spatial distribution and structural analysis of vents in the Lunar Crater Volcanic Field (Nevada USA). Bull Volcanol 76:877

    Article  Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Valentine GA, Perry FV (2006) Decreasing magmatic footprints of individual volcanoes in a waning basaltic field. Geophys Res Lett 33:L14305

    Article  Google Scholar 

  • Valentine GA, Perry FV (2007) Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261:201–216

    Article  Google Scholar 

  • Vere-Jones D (1992) Statistical methods for the description and display of earthquake catalogs. In: Walden A T, Guttorp P (eds) Statistics in the Environmental and Earth Sciences. Edward Arnold, London, pp 220–246

  • Von Veh MW, Nemeth K (2009) An assessment of the alignments of vents on geostatistical analysis in the Auckland volcanic field, New Zealand. Geomorphologie 3:175–186

    Article  Google Scholar 

  • Wadge G, Cross A (1988) Quantitative methods for detecting aligned points: an application to the volcanic vents of the Michoacan-Guanajuato volcanic field, Mexico. Geology 16:815–818

    Article  Google Scholar 

  • Weller JN (2004) Bayesian inference in forecasting volcanic hazards: an example from Armenia, Unpublished MS thesis. University of South Florida

  • Weller JN, Martin AJ, Connor CB, Connor LJ, Karakhanian A (2006) Modelling the spatial distribution of volcanoes: an example from Armenia. In: Mader H M, Coles S G, Connor C B, Connor L J (eds) Statistics in Volcanology. Geological Society, London, pp 77–87

  • Zhang D, Lutz T (1989) Structural control of igneous complexes and kimberlites: a new statistical method. Tectonophysics 159:137–148

    Article  Google Scholar 

Download references

Acknowledgments

The author is supported by the New Zealand Natural Hazards Research Platform. Annalisa Cappello and an anonymous reviewer provided welcomed feedback on the original draft. Equation 2 was the product of discussions with Shane Cronin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Bebbington.

Additional information

Editorial responsibility: S. Calvari

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebbington, M.S. Spatio-volumetric hazard estimation in the Auckland volcanic field. Bull Volcanol 77, 39 (2015). https://doi.org/10.1007/s00445-015-0921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0921-3

Keywords

Navigation