Skip to main content
Log in

Self-associations and temperature dependence of aqueous solutions of zwitterionically modified N-isopropylacrylamide copolymers

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Thermosensitive copolymer solutions are prepared from various molar ratios of N-isopropylacrylamide (NIPAM) and the zwitterionic monomer N-(methacryloxypropyl)-N,N-dimethyl-N-(3-sulfopropyl) ammonium betaine (Zw) by free radical polymerization. In the current study, we examined the rheological properties of poly (NIPAM/sulfobetaine) copolymer solutions. We found that the rheological properties are conceptually linked with the copolymer chemical structure and chain topology. We also report the effects of bulk molar mass and zwitterions on flow curve ɳ (\( \overset{\cdot }{\upgamma} \)). With the introduction of the charged group in the PNIPAM-chain, its viscoelastic phase behavior and lower critical solution temperature (LCST) are affected. At varying concentrations of zwitterionic copolymer, they showed a shear thinning behavior with two relaxation regimes for entanglement relaxation and zwitterionic interaction. Interestingly, the zwitterionic interactions are related to the molar concentration of zwitterionic monomer. This is eventually associated with the topology of the copolymer chain. Our results also showed that there was a linear increase in the LCST of these solutions as a function of zwitterionic moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. A critical gel has δ = 45°, which corresponds to dG′/dω = dG″/dω = d|G*|/dω = 0.7 according to the Kramers-Kronig relations (Kramers (1927), Kronig (1926)), which were verified to be true for δ ~ d|η*|/dω for single phase systems (Stadler and Münstedt (2008a,b)). Due to the validity of the Cox-Merz rule (η (\( \overset{\cdot }{\upgamma} \)) ≡ |η*|(ω)) for single phase samples, we can conclude that d|η*|/dω ≡ dη/d\( \overset{\cdot }{\upgamma} \) and, thus, that dη/d\( \overset{\cdot }{\upgamma} \) = − 0.3 corresponds to δ ≈ 45°, which means that a sample with dη/d\( \overset{\cdot }{\upgamma} \) = − 0.3 is a critical gel, as long as both rules are valid, which is the case in general for single phase systems, as are under investigation here (except pure polyzwitterion).

References

  • Akiyoshi K, Kang EC, Kurumada S, Sunamoto J, Principi T, Winnik FM (2000) Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly (N-isopropylacrylamides). Macromolecules 33(9):3244–3249

    Article  Google Scholar 

  • Beheshti N, Zhu KZ, Kjoniksen AL, Nystrom B (2008) Interaction behaviors in aqueous solutions of negatively and positively charged hydrophobically modified hydroxyethylcellulose in the presence of an anionic surfactant. Colloids Surf A Physicochem Eng Asp 328(1–3):79–89

    Article  Google Scholar 

  • Carr LR, Zhou Y, Krause JE, Xue H, Jiang S (2011) Uniform zwitterionic polymer hydrogels with a nonfouling and functionalizable crosslinker using photopolymerization. Biomaterials 32(29):6893–6899

    Article  Google Scholar 

  • Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol 16(1):99

    Article  Google Scholar 

  • Chen L, Honma Y, Mizutani T, Liaw DJ, Gong JP, Osada Y (2000) Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer 41(1):141–147

    Article  Google Scholar 

  • Chen SF, Zheng J, Li LY, Jiang SY (2005) Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J Am Chem Soc 127(41):14473–14478

    Article  Google Scholar 

  • Chen SF, Li LY, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51(23):5283–5293

    Article  Google Scholar 

  • Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30(28):5234–5240

    Article  Google Scholar 

  • Davidson NS, Fetters LJ, Funk WG, Graessley WW, Hadjichristidis N (1988) Association behavior in end-functionalized polymers. 1. Dilute solution properties of polyisoprenes with amine and zwitterion end groups. Macromolecules 21(1):112–121

    Article  Google Scholar 

  • Dealy J, Larson RG (2006) Structure and rheology of molten polymers—from structure to flow behavior and back again. Hanser, Munich

    Book  Google Scholar 

  • Dudowicz J, Freed KF (2000) Explanation for the inversion of an UCST phase diagram to a LCST diagram in binary polybutadiene blends. Macromolecules 33(26):9777–9781

    Article  Google Scholar 

  • Estephan ZG, Jaber JA, Schlenoff JB (2010) Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir 26(22):16884–16889

    Article  Google Scholar 

  • Friedrich T, Tieke B, Stadler FJ, Bailly C, Eckert T, Richtering W (2010) Thermoresponsive copolymer hydrogels on the basis of N-isopropylacrylamide and a non-ionic surfactant monomer: swelling behavior, transparency and rheological properties. Macromolecules 43(23):9964–9971

    Article  Google Scholar 

  • Friedrich T, Tieke B, Stadler FJ, Bailly C (2011a) Improvement of elasticity and strength of poly(N-isopropylacrylamide) hydrogels upon copolymerization with cationic surfmers. Soft Matter 7(14):6590–6597

    Article  Google Scholar 

  • Friedrich T, Tieke B, Stadler FJ, Bailly C (2011b) Copolymer hydrogels of acrylic acid and a nonionic surfmer: pH-Induced switching of transparency and volume and improved mechanical stability. Langmuir

  • Gupta DVS, Chetty M, Carman PS (2012). Oil field treatment fluids comprising zwitterionic betaine-group-containing polymers, Google Patents. US20120129738 A1

  • Hashmi S, GhavamiNejad A, Obiweluozor FO, Vatankhah-Varnoosfaderani M, Stadler FJ (2012) Supramolecular interaction controlled diffusion mechanism and improved mechanical behavior of hybrid hydrogel systems of zwitterions and CNT. Macromolecules 45(24):9804–9815

    Article  Google Scholar 

  • Hashmi S, GhavamiNejad A, Obiweluozor FO, Vatankhah-Varnoosfaderani M, Stadler FJ (2014) Correction to supramolecular interaction controlled diffusion mechanism and improved mechanical behavior of hybrid hydrogel systems of zwitterions and CNT. Macromolecules 47:7251

    Article  Google Scholar 

  • He Y, Chang Y, Hower JC, Zheng J, Chen S, Jiang S (2008a) Origin of repulsive force and structure/dynamics of interfacial water in OEG-protein interactions: a molecular simulation study. Phys Chem Chem Phys 10(36):5539–5544

    Article  Google Scholar 

  • He Y, Hower J, Chen S, Bernards MT, Chang Y, Jiang S (2008b) Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir 24(18):10358–10364

    Article  Google Scholar 

  • Ibraeva ZE, Hahn M, Jaeger W, Bimendina LA, Kudaibergenov SE (2004) Solution properties and complexation of polyampholytes based on N, N-dimethyldiallyl ammonium chloride and maleic acid or alkyl (aryl) derivatives of maleamic acids. Macromol Chem Phys 205(18):2464–2472

    Article  Google Scholar 

  • Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mat 22(9):920–932

    Article  Google Scholar 

  • Jo WH, Lee MS (1992) Thermodynamic analysis on the phase-behavior of copolymer blends—an equation of state approach. Macromolecules 25(2):842–848

    Article  Google Scholar 

  • Kaufman PR (1972). Secondary oil recovery method using n-sulfohydrocarbon substituted acrylamide polymers as viscosity increasing agents, U.S. Patent 3,679,000. U.S. Patent 3, 000. 3,679,000

  • Kitano H, Suzuki H, Kondo T, Sasaki K, Iwanaga S, Nakamura M, Ohno K, Saruwatari Y (2011) Image printing on the surface of anti-biofouling zwitterionic polymer brushes by ion beam irradiation. Macromol Biosci 11(4):557–564

    Article  Google Scholar 

  • Kramers HA (1927) La diffusion de la lumiere par les atomes. Atti Cong Intern Fisica, (Transactions of Volta Centenary Congress), Como

  • Kronig RDL (1926) On the theory of dispersion of x-rays. J Opt Soc Am Rev Sci Instrum 12(6):547–557

    Article  Google Scholar 

  • Lee JH, Gustin JP, Chen T, Payne GF, Raghavan SR (2005) Vesicle–biopolymer gels: networks of surfactant vesicles connected by associating biopolymers. Langmuir 21(1):26–33

    Article  Google Scholar 

  • Leibler L, Rubinstein M, Colby RH (1991) Dynamics of reversible networks. Macromolecules 24(16):4701–4707

    Article  Google Scholar 

  • Ma C, Zhou H, Wu B, Zhang G (2011) Preparation of polyurethane with zwitterionic side chains and their protein resistance. ACS Appl Mater Interfaces 3(2):455–461

    Article  Google Scholar 

  • Mahmoudi T, Karimkhani V, Song GS, Lee DS, Stadler FJ (2013) Shear induced physical gelation—formation of temporary networks. Macromolecules 46(10):4141–4150

    Article  Google Scholar 

  • McCormick CL, Bock J (eds) (1987) Water-soluble polymers. Encyclopedia of polymer science & engineering. Wiley, New York

    Google Scholar 

  • Mccormick CL, Chen GS (1982) Water-soluble copolymers.4. Random copolymers of acrylamide with sulfonated Co-monomers. J Polym Sci A Polym Chem 20(3):817–838

    Article  Google Scholar 

  • Neidlinger HH, Chen GS, Mccormick CL (1984) Water-soluble copolymers.6. Dilute-solution viscosity studies of random copolymers of acrylamide with sulfonated Co-monomers. J Appl Polym Sci 29(3):713–730

    Article  Google Scholar 

  • Nguyen AT, Baggerman J, Paulusse JM, van Rijn CJ, Zuilhof H (2011) Stable protein-repellent zwitterionic polymer brushes grafted from silicon nitride. Langmuir 27(6):2587–2594

    Article  Google Scholar 

  • Obiweluozor FO, GhavamiNejad A, Hashmi S, Vatankhah-Varnoosfaderani M, Stadler FJ (2014a) A NIPAM-zwitterion copolymer: rheological interpretation of the specific ion effect on the LCST. Macromol Chem Phys 215(11):1077–1091

  • Obiweluozor FO, GhavamiNejad A, Hashmi S, Vatankhah-Varnoosfaderani M, Stadler FJ (2014b) A NIPAM-zwitterion copolymer: rheological interpretation of the specific ion effect on the LCST. Macromol Chem Phys 215:2125

  • Penott-Chang EK, Gouveia L, Fernandez IJ, Muller AJ, Diaz-Barrios A, Saez A (2007) Rheology of aqueous solutions of hydrophobically modified polyacrylamides and surfactants. Colloids Surf A Physicochem Eng Asp 295(1–3):99–106

    Article  Google Scholar 

  • Richtering W (2001) Rheology and shear induced structures in surfactant solutions. Curr Opin Colloid Interface Sci 6(5–6):446–450

    Article  Google Scholar 

  • Richtering HW, Gagnon KD, Lenz RW, Fuller RC, Winter HH (1992) Physical gelation of a bacterial thermoplastic elastomer. Macromolecules 25(9):2429–2433

    Article  Google Scholar 

  • Rojas MR, Muller AJ, Saez AE (2010) Effect of ionic environment on the rheology of wormlike micelle solutions of mixtures of surfactants with opposite charge. J Colloid Interface Sci 342(1):103–109

    Article  Google Scholar 

  • Shih YJ, Chang Y (2010) Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir 26(22):17286–17294

    Article  Google Scholar 

  • Shih YJ, Chang Y, Deratani A, Quemener D (2012) “Schizophrenic” hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in human blood. Biomacromolecules 13(9):2849–2858

    Article  Google Scholar 

  • Stadler FJ, Münstedt H (2008a) Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes. J Non-Newtonian Fluid Mech 151(1–3):129–135

    Article  Google Scholar 

  • Stadler FJ, Münstedt H (2008b) “Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes” (vol 151, pg 129, 2008). J Non-Newtonian Fluid Mech 153(2–3):203–203

    Article  Google Scholar 

  • Stadler FJ, Pyckhout-Hintzen W, Schumers JM, Fustin CA, Gohy JF, Bailly C (2009) Linear viscoelastic rheology of moderately entangled telechelic polybutadiene temporary networks. Macromolecules 42(16):6181–6192

    Article  Google Scholar 

  • Stadler FJ, Still T, Fytas G, Bailly C (2010) Elongational rheology and brillouin light scattering of entangled telechelic polybutadiene based temporary networks. Macromolecules 43(18):7771–7778

    Article  Google Scholar 

  • Starck P, Mosse WK, Nicholas NJ, Spiniello M, Tyrrell J, Nelson A, Qiao GG, Ducker WA (2007) Surface chemistry and rheology of polysulfobetaine-coated silica. Langmuir 23(14):7587–7593

    Article  Google Scholar 

  • Stuart MA, Huck WT, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113

    Article  Google Scholar 

  • Tamai Y, Tanaka H, Nakanishi K (1996a) Molecular dynamics study of polymer-water interaction in hydrogels.1. Hydrogen-bond structure. Macromolecules 29(21):6750–6760

    Article  Google Scholar 

  • Tamai Y, Tanaka H, Nakanishi K (1996b) Molecular dynamics study of polymer-water interaction in hydrogels.2. Hydrogen-bond dynamics. Macromolecules 29(21):6761–6769

    Article  Google Scholar 

  • Vaisocherova H, Yang W, Zhang Z, Cao Z, Cheng G, Piliarik M, Homola J, Jiang S (2008) Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 80(20):7894–7901

    Article  Google Scholar 

  • Wang XH, Qiu XP, Wu C (1998) Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water. Macromolecules 31(9):2972–2976

    Article  Google Scholar 

  • Wasaki K, Kajihara T, Kawashima T, Nagano H, Nakashima S (2002). Method for production of alkylamino (Meth)acrylate and apparatus therefor. US-Patent 6417392

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a cross-linking polymer at the Gel point. J Rheol 30(2):367–382

    Article  Google Scholar 

  • Yang W, Chen S, Cheng G, Vaisocherova H, Xue H, Li W, Zhang J, Jiang S (2008) Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 24(17):9211–9214

    Article  Google Scholar 

  • Yasuda K, Armstrong RC, Cohen RE (1981) Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene. Rheol Acta 20:163–178

    Article  Google Scholar 

  • Yoshida T, Taribagil R, Hillmyer MA, Lodge TP (2007) Viscoelastic synergy in aqueous mixtures of wormlike micelles and model amphiphilic triblock copolymers. Macromolecules 40(5):1615–1623

    Article  Google Scholar 

  • Zhang Z, Chen S, Chang Y, Jiang S (2006) Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B 110(22):10799–10804

    Article  Google Scholar 

  • Zhang Y, Furyk S, Sagle LB, Cho Y, Bergbreiter DE, Cremer PS (2007) Effects of hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J Phys Chem C Nanomater Interfaces 111(25):8916–8924

    Article  Google Scholar 

  • Zhu ZY, Jian OY, Paillet S, Desbrieres J, Grassl B (2007) Hydrophobically modified associating polyacrylamide (HAPAM) synthesized by micellar copolymerization at high monomer concentration. Eur Polym J 43(3):824–834

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial aid from the National Research Foundation of Korea (110100713), Nanshan District Key Lab for Biopolymers and Safety Evaluation (No.KC2014ZDZJ0001A). The authors would also like to thank the staffs of the CBNU central lab for helping with the FESEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amin GhavamiNejad, Bing Du or Florian J. Stadler.

Additional information

Saud Hashmi and Mohammad Vatankhah-Varnoosfaderani contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmi, S., Vatankhah-Varnoosfaderani, M., GhavamiNejad, A. et al. Self-associations and temperature dependence of aqueous solutions of zwitterionically modified N-isopropylacrylamide copolymers. Rheol Acta 54, 501–516 (2015). https://doi.org/10.1007/s00397-015-0837-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0837-z

Keywords

Navigation