Skip to main content
Log in

Rheological behavior of vibrated bimodal granular suspensions: a free volume approach

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this paper, we investigate the dependence of the viscosity of vibrated bidisperse granular suspensions of spherical particles on the relative fraction of the two populations. At the same total volume fraction ϕ, the viscosity of the bidisperse suspension is lower than that of a monodisperse suspension. A unified viscosity model is derived using an effective free volume approach based on the definition of an equivalent mean diameter and a maximum packing fraction, both depending on the fraction of large particles ξ. The resulting model accounts for the viscosity of the suspending fluid η f , the amplitude A, and the frequency f of the vibrations, for a constant ratio of the diameters of the beads λ = 5.3 and a fixed value of the total volume fraction ϕ ≈ 0.61. It led to a general equation describing both the rheology of monodisperse and bidisperse suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The average granular pressure is defined by \(P_{g}={\Delta } \rho \phi g {\int }_{z_{0}}^{z_{0}+L} z \, \mathrm {d}z ={\Delta } \rho \phi g \frac {L+2 z_{0}}{2}={\Delta } \rho \phi g \bar {z}\) where L is the height of the vane, z 0 the distance between the free surface of the sample and the vane.

References

  • Biazzo I, Caltagirone F, Parisi G, Zamponi F (2009) Theory of amorphous packings of binary mixtures of hard spheres. Phys Rev Lett 102(19)195–701

    Article  Google Scholar 

  • Bournonville B, Coussot P, Chateau X (2004) Modification du modl̄e de farris pour la prise en compte des interactions géométriques d’un mélange polydisperse de particules. Rheologie 7:1

    Google Scholar 

  • Boyer F, Guazzelli É, Pouliquen O (2011) Unifying suspension and granular rheology. Phys Rev Lett 107(18):188–301

    Article  Google Scholar 

  • Chang C, Powell RL (1993) Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles. J Fluid Mech 253:1–25

    Article  Google Scholar 

  • Chang C, Powell RL (1994) Effect of particle size distributions on the rheology of concentrated bimodal suspensions. J Rheol 38:85

    Article  Google Scholar 

  • Chong J, Christiansen E, Baer A (1971) Rheology of concentrated suspensions. J Appl Polym Sci 15(8):2007–2021

    Article  Google Scholar 

  • Clarke A, Wiley J (1987) Numerical simulation of the dense random packing of a binary mixture of hard spheres: amorphous metals. Phys Rev B 35(14):7350

    Article  Google Scholar 

  • Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164

    Article  Google Scholar 

  • Coussot P, Ancey C (1999) Transition frictionnelle/visqueuse pour une suspension granulaire. CR Acad Sci II(327):515

    Google Scholar 

  • D’Anna G, Gremaud G (2001) Vogel-fulcher-tammann–type diffusive slowdown in weakly perturbed granular media. Phys Rev Lett 87(25):254–302

    Google Scholar 

  • Doolittle AK (1951) Studies in newtonian flow. ii. the dependence of the viscosity of liquids on free-space. J Appl Phys 22(12):1471–1475

    Article  Google Scholar 

  • Eveson G (1959) Rheology of disperse systems. Pergamon, London, England

    Google Scholar 

  • Farr RS, Groot RD (2009) Close packing density of polydisperse hard spheres. J Chem Phys 131:244:104

  • Farris R (1968) Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. J Rheol 12:281

    Article  Google Scholar 

  • Gondret P, Petit L (1997) Dynamic viscosity of macroscopic suspensions of bimodal sized solid spheres. J Rheol 41:1261

    Article  Google Scholar 

  • Hanotin C, De Richter SK, Marchal P, Michot LJ, Baravian C (2012) Vibration-induced liquefaction of granular suspensions. Phys Rev Lett 108(19):198–301

    Article  Google Scholar 

  • Hanotin C, Marchal P, Michot LJ, Baravian C, de Richter SK (2013) Dynamics of vibrated granular suspensions probed by mechanical spectroscopy and diffusing wave spectroscopy measurements. Soft Matter 9(39):9352–9360

    Article  Google Scholar 

  • He D, Ekere NN (2001) Viscosity of concentrated noncolloidal bidisperse suspensions. Rheol Acta 40(6):591–598

    Article  Google Scholar 

  • Huang N, Ovarlez G, Bertrand F, Rodts S, Coussot P, Bonn D (2005) Flow of wet granular materials. Phys Rev Lett 94(2):028–301

    Article  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3(1):137–152

    Article  Google Scholar 

  • Logos C, Nguyen Q (1996) Effect of particle size on the flow properties of a south australian coal-water slurry. Powder Technol 88(1):55–58

    Article  Google Scholar 

  • Macedo P, Litovitz T (1965) On the relative roles of free volume and activation energy in the viscosity of liquids. J Chem Phys 42:245

    Article  Google Scholar 

  • Marchal P, Choplin L, Smirani N (2009) Rheology of dense-phase vibrated powders and molecular analogies. J Rheol 53:1

    Article  Google Scholar 

  • Marchal P, Hanotin C, Michot LJ, de Richter SK (2013) Two-state model to describe the rheological behavior of vibrated granular matter. Phys Rev E 88(1):012–207

    Article  Google Scholar 

  • Mayor P, D’Anna G, Barrat A, Loreto V (2005) Observing brownian motion and measuring temperatures in vibration-fluidized granular matter. New J Phys 7(1):28

    Article  Google Scholar 

  • McGeary R (1961) Mechanical packing of spherical particles. J Am Ceram Soc 44(10):513–522

    Article  Google Scholar 

  • Ouchiyama N, Tanaka T (1984) Porosity estimation for random packings of spherical particles. Ind Eng Chem Fundam 23(4):490–493

    Article  Google Scholar 

  • Ovarlez G, Bertrand F, Rodts S (2006) Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J Rheol (1978-present) 50(3):259–292

    Article  Google Scholar 

  • Poslinski A, Ryan M, Gupta R, Seshadri S, Frechette F (1988) Rheological behavior of filled polymeric systems ii. the effect of a bimodal size distribution of particulates. J Rheol 32:751

    Article  Google Scholar 

  • Qi F, Tanner RI (2012) Random close packing and relative viscosity of multimodal suspensions. Rheol Acta 51(4):289–302

    Article  Google Scholar 

  • Quemada D (1977) Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheol Acta 16:82

    Article  Google Scholar 

  • Quemada D (2006) Modélisation rhéologique structurelle. Dispersions concentrées et fluides complexes Lavoisier, France

    Google Scholar 

  • Russel WB, Saville DA, Schowalter WR (1992) Colloidal dispersions. Cambridge University Press

  • Shapiro AP, Probstein RF (1992) Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions. Phys Rev Lett 68(9):1422

    Article  Google Scholar 

  • Shauly A, Wachs A, Nir A (1998) Shear-induced particle migration in a polydisperse concentrated suspension. J Rheol 42:1329

    Article  Google Scholar 

  • Storms R, Ramarao B, Weiland R (1990) Low shear rate viscosity of bimodally dispersed suspensions. Powder Technol 63(3):247–259

    Article  Google Scholar 

  • Sweeny KH, Geckler RD (1954) The rheology of suspensions. J Appl Phys 25(9):1135–1144

    Article  Google Scholar 

  • Toivakka MO, Eklund DE (1996) Prediction of suspension rheology through particle motion simulation. Tappi J 79(1):211–222

    Google Scholar 

  • Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Hanotin.

Appendix

Appendix

We study the behavior of the viscosity of the bidisperse suspension in the regime σ > σ f . In that case, η does not depend on σ v (Fig. 3a) and increases with the fluid viscosity η f (Fig. 3b). Experiments carried out with different viscosities of the suspending fluid show that η is a linear function of η f . Figure 7 displays the evolution of the relative viscosity η r300 = η/η f for σ =300 Pa as a function of ξ. The evolution is similar to that observed for σ < σ f (Fig. 3c) with a significantly lowered viscosity of the bidisperse suspension compared to the monodisperse one. Numerous experimental works (Sweeny and Geckler 1954; Eveson 1959; Chong et al. 1971; Poslinski et al. 1988; Storms et al. 1990; Shapiro and Probstein 1992; Gondret and Petit 1997; Logos and Nguyen 1996) and numerical simulations (Chang and Powell 1993; 1994; He and Ekere 2001; Toivakka and Eklund 1996; Farr and Groot 2009; Biazzo et al. 2009; Clarke and Wiley 1987) have shown that under shear, laws used to describe the viscosity of monodisperse suspensions such as Krieger Dougherty relation could be extended to the case of bidisperse suspensions using a maximum packing fraction ϕ that evolves with the fraction of large particles ξ. In the same way, it is reasonable to extend Quemada (1977)’s law, used to describe the viscosity-concentration curve for monodisperse particles (Fig. 2 in Hanotin et al. (2012)), to the case of bidisperse particles by applying Shauly et al. (1998)’s relation (Eq. 9 and Fig. 4) to describe the evolution of ϕ with ξ. Figure 7 displays the result of such a treatment and reveals a good agreement between experimental data and Quemada’s law. The agreement is slightly less satisfactory in the range ξ =0.6–0.8, i.e., in the range of minimal viscosity. This may be due either to some inaccuracy in (Shauly et al. 1998)’s relation or in the choice of \(\phi ^{\ast }_{mono}\) in (Eq. 9). Still, these results show that in the high shear regime, suspension behaves as a homogeneous suspension of hard spheres, whether the particles are monodisperse or bidisperse.

Fig. 7
figure 7

Relative high shear viscosity (η r300 = η/η f ) with η the suspension viscosity and η f the fluid viscosity for σ =300 Pa as a function of the fraction of large particles (ξ), for bidisperse particles immersed in a fluid of viscosity η f = 68 and 165 mPa.s. The line represents the fit of the experimental data by Quemada (1977)’s law with ϕ determined by Shauly et al. (1998)’s relation (Eq. 9 and Fig. 4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanotin, C., de Richter, S.K., Michot, L.J. et al. Rheological behavior of vibrated bimodal granular suspensions: a free volume approach. Rheol Acta 54, 327–335 (2015). https://doi.org/10.1007/s00397-014-0833-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-014-0833-8

Keywords

Navigation