Skip to main content
Log in

Interpersonal comparison necessary for Arrovian aggregation

  • Original Paper
  • Published:
Social Choice and Welfare Aims and scope Submit manuscript

Abstract

While studies of social welfare functionals have shown that some interpersonal comparability such as ordinal and level comparability and cardinal and unit comparability resolves Arrow’s impossibility theorem, the kind of information necessary to solve this issue remains unclear. To address this shortcoming in the body of knowledge on this topic, the present study captures and then characterizes the features of informational structures that make available social welfare functionals satisfying Strong Pareto, Anonymity, and Independence of Irrelevant Alternatives. We know from this characterization that if utility levels are not interpersonally comparable, then transformed utility functions by a certain transformation need to be cardinal and unit comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For surveys of this research stream, see Blackorby et al. (2002), Blackorby et al. (1984), Bossert and Weymark (2004), d’Aspremont (1985), d’Aspremont and Gevers (2002), Fleurbaey and Hammond (2004), Gaertner (2009), Roberts (2010), Roemer (1996), and Sen (1977, 1986).

  2. For this and related results, see Deschamps and Gevers (1978), Hammond (1976, 1979), Gevers (1979), Roberts (1980a), and Sen (1976, 1977).

  3. For this and related results, see Basu (1983), d’Aspremont and Gevers (1977), Deschamps and Gevers (1978), Gevers (1979), Maskin (1978), and Roberts (1980b).

  4. V is order isomorphic to \( \mathbb {R} \) if and only if there is an increasing and onto transformation \( g:V\rightarrow \mathbb {R} .\) For example, since \(\log : \mathbb {R} _{++}\rightarrow \mathbb {R} \) is increasing and onto, \( \mathbb {R} _{++}\) is order isomorphic to \( \mathbb {R} .\)

  5. Because Arrow (1963) considered an aggregation satisfying Weak Pareto, Non-Dictatorship, and IIA, these conditions are actually stronger than Arrow’s original conditions.

  6. This is equivalent to what Sen (1970) called an informational basis.

  7. An equivalence relation is a binary relation \(\mathcal {I}\) that satisfies reflexivity \([ \forall U\in \mathcal {U}^{N}, U \mathcal {I}U] ,\) symmetry \([ \forall U,U^{\prime }\in \mathcal {U}^{N}, \) if \(U\mathcal {I}U^{\prime }\) , then \(\,\, U^{\prime }\mathcal {I}U] \), and transitivity \([ \forall U,U^{\prime },U^{\prime \prime }\in \mathcal {U}^{N}, \) if \(U\mathcal {I}U^{\prime }\) and \(U^{\prime } \mathcal {I}U^{\prime \prime }\) , then \(\,U\mathcal {I} U^{\prime \prime }] .\)

  8. A subset \(\Phi ^{N}\subseteq \Psi ^{N}\) is a subgroup of \(\Psi ^{N}\) if \(\Phi ^{N}\) satisfies reflexivity \([ (id_{V},\ldots ,id_{V})\in \Phi ^{N}, \) where \(id_{V}\) denotes the identity mapping of V] ,  symmetry \([ \forall (\varphi _{1},\ldots ,\varphi _{n})\in \Phi ^{N}, (\varphi _{1}^{-1},\ldots ,\varphi _{n}^{-1})\in \Phi ^{N}] \) and transitivity \([ \forall (\varphi _{1},\ldots ,\varphi _{n}),(\psi _{1},\ldots ,\psi _{n})\in \Phi ^{N}, (\varphi _{1}\circ \psi _{1},\ldots ,\varphi _{n}\circ \psi _{n})\in \Phi ^{N}] .\)

  9. A binary relation \(\le \) over \(\Phi \) is a linear order if \(\le \) satisfies completeness \(\left[ \forall \varphi ,\psi \in \Phi , \varphi \le \psi \text { or }\psi \le \varphi \right] ,\) transitivity \(\left[ \forall \varphi ,\psi ,\varsigma \in \Phi , \varphi \le \psi \text { and }\psi \le \varsigma \Longrightarrow \varphi \le \varsigma \right] \), and antisymmetry \(\left[ \forall \varphi ,\psi \in \Phi ,\text { }\varphi \le \psi \text { and }\psi \le \varphi \Longrightarrow \varphi =\psi \right] .\)

  10. Since we assume that \(\mathcal {I}\) is represented by a certain \(\Phi ^{N}\), we can directly quote their explanation.

  11. See, for example, Aczél (1966) and Zdun (1993).

  12. See, for example, d’Aspremont and Gevers (1977) and Hammond (1979) .

References

  • Aczél J (1966) Lectures on functional equations and their applications. Academic Press, New York

    Google Scholar 

  • Arrow KJ (1963) Social choice and individual welfare, 2nd edn. Wiley, New York

    Google Scholar 

  • Basu K (1983) Cardinal utility, utilitarianism, and a class of invariance axioms in welfare analysis. J Math Econ 12:193–206

    Article  Google Scholar 

  • Blackorby C, Bossert W, Donaldson D (2002) Utilitarianism and the theory of justice. In: Arrow KJ, Sen AK, Suzumura K (eds) handbook of social choice and welfare. Elsevier, Amsterdam, pp 543–596

    Chapter  Google Scholar 

  • Blackorby C, Donaldson D, Weymark JA (1984) Social choice with interpersonal utility comparisons: a diagrammatic introduction. Int Econ Rev 25:327–356

    Article  Google Scholar 

  • Bossert W (1991) On intra- and interpersonal utility comparisons. Soc Choice Welf 8:207–219

    Article  Google Scholar 

  • Bossert W (2000) Welfarism and information invariance. Soc Choice Welf 17:321–336

    Article  Google Scholar 

  • Bossert W, Weymark JA (2004) Utility in social choice. In: Barberà S, Hammond P, Seidl C (eds) Handbook of utility theory, vol 2. Kluwer, Dordrecht, pp 1099–1177

    Chapter  Google Scholar 

  • d’Aspremont C (1985) Axioms for Social welfare orderings. In: Hurwicz L, Schmeidler D, Sonnenschein H (eds) Social goals and social organization: essays in memory of Elisha Pazner. Cambridge University Press, Cambridge, pp 19–67

    Google Scholar 

  • d’Aspremont C, Gevers L (1977) Equity and the informational basis of the collective choice. Rev Econ Stud 44:199–209

    Article  Google Scholar 

  • d’Aspremont C, Gevers L (2002) Social welfare functionals and interpersonal comparability. In: Arrow KJ, Sen AK, Suzumura K (eds) Handbook of social choice and welfare. Elsevier, Amsterdam, pp 459–541

    Chapter  Google Scholar 

  • Deschamps R, Gevers L (1978) Leximin and utilitarian rules: a joint characterization. J Econ Theory 17:143–163

    Article  Google Scholar 

  • Fleurbaey M (2003) On the informational basis of social choice. Soc Choice Welf 21:347–384

    Article  Google Scholar 

  • Fleurbaey M, Hammond PJ (2004) Interpersonally comparable utility. In: Barberà S, Hammond P, Seidl C (eds) Handbook of utility theory, vol 2. Kluwer, Dordrecht, pp 1179–1285

    Chapter  Google Scholar 

  • Gaertner W (2009) A primer in social choice theory. Oxford University Press, Oxford

    Google Scholar 

  • Gevers L (1979) On interpersonal comparability and social welfare orderings. Econometrica 44:75–90

    Article  Google Scholar 

  • Hammond PJ (1976) Equity arrow’s conditions, and rawls’ difference principle. Econometrica 44:793–804

    Article  Google Scholar 

  • Hammond PJ (1979) Equity in two person situations: some consequences. Econometrica 47:1127–1135

    Article  Google Scholar 

  • Maskin E (1978) A theorem on utilitarianism. Rev Econ Theory 45:93–96

    Google Scholar 

  • Moulin H (1988) Axioms of cooperative decision making. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Roberts K (1980a) Possibility theorems with interpersonal comparable welfare levels. Rev Econ Stud 47:409–420

    Article  Google Scholar 

  • Roberts K (1980b) Interpersonal comparability and social choice theory. Rev Econ Stud 47:421–439

    Article  Google Scholar 

  • Roberts K (2010) Social choice theory and the informational basis approach. In: Morris CW, Sen A (eds) Cambridge University Press, Cambridge, pp 115–137

  • Roemer JE (1996) Theories of distributive justice. Harvard University Press, Cambridge

    Google Scholar 

  • Sen A (1970) Collective choice and social welfare. Holden-Day, San Francisco

    Google Scholar 

  • Sen A (1976) Welfare inequalities and rawlsian axiomatics. Theory Dec 7:243–262

    Article  Google Scholar 

  • Sen A (1977) On weights and measures: informational constraints in social welfare analysis. Econometrica 45:1539–1572

    Article  Google Scholar 

  • Sen A (1986) Social choice theory. In: Arrow KJ, Intriligator MD (eds) Handbook of mathematical economics, vol 3. North-Holland, Amsterdam, pp 1073–1181

    Google Scholar 

  • Tsui K, Weymark JA (1997) Social welfare orderings for ratio-scale measurable utilities. Econ Theor 10:241–256

    Article  Google Scholar 

  • Zdun MC (1993) The structure of iteration groups of continuous functions. Aequationes Mathematicae 46:19–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Yamamura.

Additional information

I wish to thank the associate editor and two anonymous referees for their valuable comments. I am indebted to Ken-Ichi Shimomura, William Thomson, and Takehiko Yamato for their guidance. I am grateful to Tsuyoshi Adachi, Keisuke Bando, Marc Fleurbaey, Srihari Govindan, Kazuhiko Hashimoto, Asen Kochev, Eiichi Miyagawa, Ryo-ichi Nagahisa, Takayuki Oishi, Shin Sakaue, Koichi Suga, and Naoki Yoshihara for their valuable advice and discussions. I also thank the participants of the meeting of the Japanese Economic Association at Hokkaido University, of the 11th international meeting of the Society for Social Choice and Welfare at the Indian Habitat Centre, of the 20th Decentralization Conference at Fukuoka University, and of the seminars at Kobe University, Waseda University, the University of Rochester, and Aomori Public University for their helpful comments. I thank Editage (http://www.editage.jp) for English language editing. This work was partially supported by JSPS KAKENHI Grant Number JP26285045.

Appendix: Proofs

Appendix: Proofs

1.1 Welfarism Theorem

In order to prove our results, we need the following result, which is known as the welfarism theorem. We introduce some notation. A social welfare ordering (SWO) is a binary relation \(\succsim \) over \(V^{N}\equiv \prod \nolimits _{i\in N}V\), which is reflexive, complete, and transitive. The symmetric and asymmetric parts of \(\succsim \) are denoted by \( \succ \) and \(\sim \), respectively.

We also define three axioms for SWOs.

Strong Pareto (SP): For each pair \(u,u^{\prime }\in V^{N},\) (1) if for each \(i\in N,\) \(u_{i}\ge u_{i}^{\prime },\) then \(u\succsim _{R}u^{\prime }\) and (2) if for each \(i\in N,\) \(u_{i}\ge u_{i}^{\prime }\) and for some \(j\in N\) , \(u_{j}>u_{j}^{\prime }\) , then \(u\succ u^{\prime }\).

Anonymity (AN): For each \(\left( u_{1},\ldots ,u_{n}\right) \in V^{N}\) and each permutation \(\pi \) of N, \(\left( u_{1},\ldots ,u_{n}\right) \sim \left( u_{\pi (1)},\ldots ,u_{\pi (n)}\right) \).

Invariance with respect to \(\Phi ^{N}\) (INV- \( \Phi ^{N}\) ): For each pair \(u,u^{\prime }\in V^{N}\) and each \(\varphi \in \Phi ^{N},\) \(\left( u_{1},\ldots ,u_{n}\right) \succsim \left( u_{1}^{\prime },\ldots ,u_{n}^{\prime }\right) \) if and only if \(\left( \varphi _{1}(u_{1}),\ldots ,\varphi _{n}(u_{n})\right) \succsim \left( \varphi _{1}(u_{1}^{\prime }),\ldots ,\varphi _{n}(u_{n}^{\prime })\right) .\)

Lemma 1

(welfarism theoremFootnote 12) If an SWFL R satisfies SP and IIA , then there is an SWO \(\succsim _{R}\) such that for each \(U\in \mathcal {U}^{N}\) and each pair \(x,y\in X,\)

$$\begin{aligned} x\,R_{U}\,y \textit{ if and only if } \left( U_{1}(x),\ldots ,U_{n}(x)\right) \succsim _{R}\left( U_{1}(y),\ldots ,U_{n}(y)\right) . \end{aligned}$$

Moreover, if R satisfies SP and AN and INV-\(\Phi ^{N}\), then \(\succsim _{R}\) also satisfies SP, AN and INV-\(\Phi ^{N}\).

1.2 Algebraic structure of \(\Phi \) provided by NCP

We also need to know the algebraic structure of \(\Phi \) provided by NCP. This is described by Lemma 2.

Lemma 2

There is a function \(G:\Phi \rightarrow \mathbb {R} \) such that for each pair \(\varphi ,\psi \in \Phi \), \( \left[ \varphi \le \psi ,\text { if and only if }G(\varphi )\le G(\psi ) \right] \) and \(\left[ G(\varphi \circ \psi )=G(\varphi )+G(\psi ) \right] \) if and only if \(\Phi \) satisfies NCP.

Lemma 2 states that \(\Phi \) is order and group homomorphic to \( \mathbb {R} \) if and only if \(\Phi \) satisfies NCP. This algebraic structure makes it possible for the binary relation \(\le \) over\(\ \Phi \) to be represented by a real-valued function \(G:\Phi \rightarrow \mathbb {R} \). According to this function G,  for each \(\varphi \in \Phi \), a change caused by \(\varphi \) is measured by \(G(\varphi )\in \mathbb {R} \).

Proof of Lemma 2

We introduce some notation.

For each \(n\in \mathbb {N} \) and each \(\varphi \in \Phi \), define \(\varphi ^{n}\) by

$$\begin{aligned} \varphi ^{n}\equiv \underset{n\, times}{\underbrace{\varphi \circ \cdots \circ \varphi }.} \end{aligned}$$

Given \(\Phi \) that satisfies NCP, define \(\Phi ^{+}\subseteq \Phi \) by

$$\begin{aligned} \Phi ^{+}\equiv \left\{ \varphi \in \Phi |\text { for each }u\in V, \varphi (u)\ge u\right\} . \end{aligned}$$

Step 1. For each \(\varphi \in \Phi ,\) \(\varphi \) is continuous.

Proof

Suppose that there is \(\varphi \in \Phi \ \)that is not continuous. Without loss of generality, let

$$\begin{aligned} \underset{u\rightarrow u^{*}-0}{\lim }\varphi (u)<\varphi (u^{*}). \end{aligned}$$

Since \(\Phi \) is a subgroup, there is \(\varphi ^{-1}\in \Phi \) such that \( \varphi ^{-1}\circ \varphi =id_{v}.\) Let \(\widetilde{u}\in \left( \lim \nolimits _{ u\rightarrow u^{*}-0} \varphi (u),\varphi (u^{*})\right) \). Then, since for each \(u^{\prime }<u^{*},\) \(\widetilde{u}>\varphi (u^{\prime }),\) \(\varphi ^{-1}(\widetilde{u})>\varphi ^{-1}\circ \varphi (u^{\prime })=u^{\prime }.\) Hence, \(\varphi ^{-1}(\widetilde{u})\ge u^{*}.\) However, since \(\widetilde{u}<\varphi (u^{*}),\) \(\varphi ^{-1}( \widetilde{u})<\varphi ^{-1}(\varphi (u^{*}))=u^{*},\) which is a contradiction. \(\square \)

Step 2. Suppose that \(\Phi \) satisfies NCP. Then, for each \(\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \) and each \(u\in V,\)

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\varphi ^{n}(u)=\infty . \end{aligned}$$

Proof

Suppose that there are \(\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \) and \(u\in V,\) such that \(\lim _{n\rightarrow \infty }\varphi ^{n}(u)<\infty \). Since \(\left( \varphi ^{n}(u)\right) _{n\in \mathbb {N} }\) is a monotone increasing sequence, there is \(u^{*}\) such that

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\varphi ^{n}(u)=u^{*}. \end{aligned}$$

From Step 1, \(\varphi \) is continuous, so that

$$\begin{aligned} \varphi (u^{*})=\underset{n\rightarrow \infty }{\lim }\varphi (\varphi ^{n}(u))=\underset{n\rightarrow \infty }{\lim }\varphi ^{n+1}(u)=u^{*}. \end{aligned}$$

Hence, from NCP, \(\varphi =\) \(id_{V},\) which contradicts \(\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} . \) \(\square \)

Step 3. Suppose that \(\Phi \) satisfies NCP. Then, for each pair \(\varphi ,\varphi ^{\prime }\in \Phi ^{+}\backslash \left\{ id_{V}\right\} ,\) there is \(n\in \mathbb {N} \) such that

$$\begin{aligned} \varphi ^{n}\ge \varphi ^{\prime }. \end{aligned}$$

Proof

Let \(u\in V.\) From Step 2, there is \(n\in \mathbb {N} \) such that

$$\begin{aligned} \varphi ^{n}(u)\ge \varphi ^{\prime }(u). \end{aligned}$$

Then, from NCP, for each \(u^{\prime }\in V,\)

$$\begin{aligned} \varphi ^{n}(u^{\prime })\ge \varphi ^{\prime }(u^{\prime }). \end{aligned}$$

\(\square \)

Let \(\varphi _{1}\in \Phi ^{+}\backslash \left\{ id_{V}\right\} \) and for each \(\varphi \in \Phi ^{+},\) define \(G(\varphi )\in \mathbb {R} \) by

$$\begin{aligned} G(\varphi )\equiv \sup \left\{ \frac{m}{n}|\varphi ^{n}\le \varphi _{1}^{m}, n,m\in \mathbb {N} \right\} . \end{aligned}$$

From Step 3, we can easily check that for each \(\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} ,\) \(G(\varphi )\in \mathbb {R} _{++}\).

Step 4. For each pair \(\varphi ,\psi \in \Phi ^{+},\) if \(\varphi \le \psi ,\) then \(G(\varphi )\le G(\psi ).\)

Proof

For each pair \(n,m\in \mathbb {N} ,\) if \(\psi ^{n}\le \varphi _{1}^{m},\) then \(\varphi ^{n}\le \psi ^{n}\le \varphi _{1}^{m}.\) Hence,

$$\begin{aligned} G(\varphi )= & {} \sup \left\{ \frac{m}{n}|\varphi ^{n}\le \varphi _{1}^{m}, n,m\in \mathbb {N} \right\} \\\le & {} \sup \left\{ \frac{m}{n}|\psi ^{n}\le \varphi _{1}^{m}, n,m\in \mathbb {N} \right\} =G(\psi ). \end{aligned}$$

\(\square \)

Step 5. For each pair \(\varphi ,\psi \in \Phi ^{+},\) \( G(\varphi \circ \psi )=G(\psi \circ \varphi ).\)

Proof

We distinguish two cases.

Case 1 \(\min \left\{ G(\varphi )|\varphi \in \Phi _{i}^{+}\backslash \left\{ id_{V}\right\} \right\} \) exists.

Let \(\varphi _{1}\in \arg \min \left\{ G(\varphi )|\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \right\} .\) If there are \(\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \) and \(n\in \mathbb {N} \) such that \(\varphi _{1}^{n}<\varphi <\varphi _{1}^{n+1},\) then since

$$\begin{aligned} id_{v}=\varphi _{1}^{-n}\circ \varphi _{1}^{n}<\varphi _{1}^{-n}\circ \varphi <\varphi _{1}^{-n}\circ \varphi _{1}^{n+1}=\varphi _{1}, \end{aligned}$$

we have \(\varphi _{1}^{-n}\circ \varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \) and \(\varphi _{1}^{-n}\circ \varphi <\varphi _{1},\) which is a contradiction. Hence, for each pair \(\varphi ,\psi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} ,\) there are \(n,n^{\prime }\in \mathbb {N} \) such that

$$\begin{aligned} \varphi =\varphi _{1}^{n},\quad { and }\quad \psi =\varphi _{1}^{n^{\prime }}. \end{aligned}$$

Therefore,

$$\begin{aligned} G(\varphi \circ \psi )=G(\varphi _{1}^{n+n^{\prime }})=G(\psi \circ \varphi ). \end{aligned}$$

\(\square \)

Case 2 \(\min \left\{ G(\varphi )|\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \right\} \) does not exist.

Suppose that \(\inf \left\{ G(\varphi )|\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \right\} >0.\) Then, there are \(\varphi ,\psi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \) such that\(\ \varphi <\psi \) and

$$\begin{aligned} G(\varphi )\le G(\psi )<2\inf \left\{ G(\varphi )|\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \right\} . \end{aligned}$$

Since \(\varphi ^{-1}\circ \psi >id_{V},\) there is \(\xi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \) such that \(\xi <min\left\{ \varphi ,\varphi ^{-1}\circ \psi \right\} .\) Then, from Step 4,

$$\begin{aligned} G(\psi )= & {} G(\varphi \circ (\varphi ^{-1}\circ \psi )) \\\ge & {} G(\xi \circ \xi ) \\= & {} 2G(\xi ) \\> & {} 2\inf \left\{ G(\varphi )|\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \right\} , \end{aligned}$$

which is a contradiction.

Hence, for each \(\epsilon >0\), there is \(\varphi _{\epsilon }\in \Phi ^{+}\backslash \left\{ id_{V}\right\} \) such that \(G(\varphi _{\epsilon })<\epsilon .\) For each pair \(\varphi ,\psi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} ,\) from Step 3, there are \(n,n^{\prime }\in \mathbb {N} \) such that

$$\begin{aligned} \varphi _{\epsilon }^{n}\le \varphi<\varphi _{\epsilon }^{n+1}\quad \text { and }\quad \varphi _{\epsilon }^{n^{\prime }}\le \psi <\varphi _{\epsilon }^{n^{\prime }+1}. \end{aligned}$$

Then, since

$$\begin{aligned} \varphi _{\epsilon }^{n+n^{\prime }}\le \varphi \circ \psi<\varphi _{\epsilon }^{n+n^{\prime }+2}\quad \text { and }\quad \varphi _{\epsilon }^{n+n^{\prime }}\le \psi \circ \varphi <\varphi _{\epsilon }^{n+n^{\prime }+2}, \end{aligned}$$

we have

$$\begin{aligned} (n+n^{\prime })G(\varphi _{\epsilon })\le G(\varphi \circ \psi )\le (n+n^{\prime }+2)G(\varphi _{\epsilon }), \end{aligned}$$
$$\begin{aligned} (n+n^{\prime })G(\varphi _{\epsilon })\le G(\psi \circ \varphi )\le (n+n^{\prime }+2)G(\varphi _{\epsilon }), \end{aligned}$$

from which we obtain

$$\begin{aligned} \left| G(\varphi \circ \psi )-G(\psi \circ \varphi )\right| \le 2G(\varphi _{\epsilon })<2\epsilon . \end{aligned}$$

Therefore, \(G(\varphi \circ \psi )=G(\psi \circ \varphi )\). \(\square \)

Step 6. For each pair \(\varphi ,\psi \in \Phi ^{+},\) \(G(\varphi \circ \psi )=G(\varphi )+G(\psi ).\)

Proof

It is sufficient to show that for each pair \(\varphi ,\psi \in \Phi ^{+}\) and each quadruplet\(\ n,m,n^{\prime },m^{\prime }\in \mathbb {N} ,\)

$$\begin{aligned} G(\varphi )\le & {} \frac{m}{n}\text { and }G(\psi )\le \frac{m^{\prime }}{ n^{\prime }}\text { together imply }G(\varphi \circ \psi )\le \frac{m}{n}+ \frac{m^{\prime }}{n^{\prime }},\text { and}\\ G(\varphi )\ge & {} \frac{m}{n}\text { and }G(\psi )\ge \frac{m^{\prime }}{ n^{\prime }}\text { together imply }G(\varphi \circ \psi )\ge \frac{m}{n}+ \frac{m^{\prime }}{n^{\prime }}. \end{aligned}$$

If \(G(\varphi )\le \frac{m}{n}\) and \(G(\psi )\le \frac{m^{\prime }}{ n^{\prime }}\), then from the definition of G,  we have \(\varphi ^{n}\le \varphi _{1}^{m}\) and \(\psi ^{n^{\prime }}\le \varphi _{1}^{m^{\prime }}.\) Then, since \(\varphi ^{nn^{\prime }}\le \varphi _{1}^{n^{\prime }m}\) and \( \psi ^{nn^{\prime }}\le \varphi _{1}^{nm^{\prime }},\)

$$\begin{aligned} \varphi ^{nn^{\prime }}\circ \psi ^{nn^{\prime }}\le \varphi _{1}^{n^{\prime }m+nm^{\prime }}. \end{aligned}$$

Hence, from Step 5,

$$\begin{aligned} nn^{\prime }G(\varphi \circ \psi )= & {} G((\varphi \circ \psi )^{nn^{\prime }})\\= & {} G(\varphi ^{nn^{\prime }}\circ \psi ^{nn^{\prime }}) \\\le & {} G(\varphi _{1}^{n^{\prime }m+nm^{\prime }}) \\= & {} n^{\prime }m+nm^{\prime }, \end{aligned}$$

from which we obtain

$$\begin{aligned} G(\varphi \circ \psi )\le \frac{m}{n}+\frac{m^{\prime }}{n^{\prime }}. \end{aligned}$$

We can similarly show that \(G(\varphi )\ge \frac{m}{n}\) and \(G(\psi )\ge \frac{m^{\prime }}{n^{\prime }}\) together imply \(G(\varphi \circ \psi )\ge \frac{m}{n}+\frac{m^{\prime }}{n^{\prime }}.\) \(\square \)

For each \(\varphi \in \Phi \backslash \Phi ^{+},\) define \(G(\varphi )\in \mathbb {R} \) by

$$\begin{aligned} G(\varphi )=-G(\varphi ^{-1}), \end{aligned}$$

where \(\varphi ^{-1}\circ \varphi =id_{V}.\) For each \(\varphi \in \Phi \backslash \Phi ^{+},\) since \(\varphi ^{-1}\in \Phi ^{+},\) we have\(\ G(\varphi )\le 0.\)

Step 7. For each pair \(\varphi ,\psi \in \Phi ,\) \(G(\varphi \circ \psi )=G(\varphi )+G(\psi ).\)

Proof

If \(\varphi \circ \psi \in \Phi ^{+}\) and \(\varphi \in \Phi \backslash \Phi ^{+}\), and then from Step 6,

$$\begin{aligned} G(\psi )= & {} G(\varphi ^{-1}\circ \varphi \circ \psi )\\= & {} G(\varphi ^{-1})+G(\varphi \circ \psi ) \\= & {} -G(\varphi )+G(\varphi \circ \psi ), \end{aligned}$$

from which we obtain \(G(\varphi \circ \psi )=G(\varphi )+G(\psi ).\) We can similarly show that if \(\varphi \circ \psi \in \Phi \backslash \Phi ^{+}\), then \(G(\varphi \circ \psi )=G(\varphi )+G(\psi )\). \(\square \)

Step 8. For each pair \(\varphi ,\psi \in \Phi _{i}^{{}},\) \(\varphi \le \psi \) if and only if \(G(\varphi )\le G(\psi ).\)

Proof

Let \(\varphi ,\psi \in \Phi \) be such that\(\ \varphi <\psi .\) Then, since \(\varphi ^{-1}\circ \psi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \), we have \(G(\varphi ^{-1}\circ \psi )>0\). Then, from Step 7,

$$\begin{aligned} G(\psi )= & {} G(\varphi \circ \varphi ^{-1}\circ \psi )\\= & {} G(\varphi )+G(\varphi ^{-1}\circ \psi ) \\> & {} G(\varphi ). \end{aligned}$$

\(\square \)

Step 9. Suppose there is a mapping \(G:\Phi \rightarrow \mathbb {R} \) such that for each pair \(\varphi ,\psi \in \Phi \) , \( \left[ \varphi \le \psi ,\text { if and only if }G(\varphi )\le G(\psi ) \right] \) and \(\left[ G(\varphi \circ \psi )=G(\varphi )+G(\psi ) \right] ,\) then \(\Phi \) satisfies NCP.

Proof

For each pair \(\varphi ,\psi \in \Phi ,\) since either \( G(\varphi )\le G(\psi )\) or \(G(\varphi )\ge G(\psi )\), either \(\varphi \le \psi \) or \(\varphi \ge \psi \) also holds from the definition of G. Hence, \(\Phi \) satisfies NCP. \(\square \)

1.3 Proof of Theorem 1

Necessity: Suppose that\(\ \Phi \) does not satisfy NCP and that an SWFL R satisfies SP, AN, IIA, and INV- \(\Phi .\) Then, there are \( \varphi _{1},\varphi _{2}\in \Phi \) and \(u_{1},u_{2}\in V\) such that

$$\begin{aligned} \left[ \varphi _{1}(u_{1})>\varphi _{2}(u_{1}),\text { and }\varphi _{1}(u_{2})\le \varphi _{2}(u_{2})\right] \text { or }\left[ \varphi _{1}(u_{1})<\varphi _{2}(u_{1}),\text { and }\varphi _{1}(u_{2})\ge \varphi _{2}(u_{2})\right] . \end{aligned}$$

Without loss of generality, suppose that \(\varphi _{1}(u_{1})>\varphi _{2}(u_{1})\) and \(\varphi _{1}(u_{2})\le \varphi _{2}(u_{2}).\) Let \(U\in \mathcal {U}^{N}\) be such that

$$\begin{aligned} U_{1}(x)= & {} U_{2}(y)=u_{1}, U_{1}(y)=U_{2}(x)=u_{2}\text { and }\\ U_{i}(x)= & {} U_{i}(y)=u,\quad \text { for each }i\in N\backslash \left\{ 1,2\right\} . \end{aligned}$$

According to the welfarism theorem, there is \(\succsim _{R}\subset V^{N}\times V^{N}\) such that for each \(U\in \mathcal {U}^{N}\ \)and each pair \( x,y\in X,\) \(x\,R_{U}\,y\ \)if and only if \(U(x)\succsim _{R}U(y).\) From the AN of \(\succsim _{R},\)

$$\begin{aligned} (u_{1},u_{2},u,\ldots ,u)\sim _{R}(u_{2},u_{1},u,\ldots ,u), \end{aligned}$$

so that \(x\,I_{U}\,y\). From INV-\(\Phi ,\) for each pair \(\varphi _{1},\varphi _{2}\in \Phi ,\) we have\(\ x\,I_{(\varphi _{1}\circ U_{1},\varphi _{2}\circ U_{2},U_{N\backslash \left\{ 1,2\right\} )}}\,y.\) Hence,

$$\begin{aligned} (\varphi _{1}(u_{1}),\varphi _{2}(u_{2}),u,\ldots ,u)\sim _{R}(\varphi _{1}(u_{2}),\varphi _{2}(u_{1}),u,\ldots ,u). \end{aligned}$$

From the AN of \(\succsim _{R},\)

$$\begin{aligned} (\varphi _{1}(u_{2}),\varphi _{2}(u_{1}),u,\ldots ,u)\sim _{R}(\varphi _{2}(u_{1}),\varphi _{1}(u_{2}),u,\ldots ,u). \end{aligned}$$

Therefore,

$$\begin{aligned} (\varphi _{1}(u_{1}),\varphi _{2}(u_{2}),u,\ldots ,u)\sim _{R}(\varphi _{2}(u_{1}),\varphi _{1}(u_{2}),u,\ldots ,u). \end{aligned}$$

However, since \(\varphi _{1}(u_{1})>\varphi _{2}(u_{1})\) and \(\varphi _{2}(u_{2})\ge \varphi _{2}(u_{1})\), from the SP of \(\succsim _{R}\), we have

$$\begin{aligned} (\varphi _{1}(u_{1}),\varphi _{2}(u_{2}),u,\ldots ,u)\succ _{R}(\varphi _{2}(u_{1}),\varphi _{1}(u_{2}),u,\ldots ,u), \end{aligned}$$

which is a contradiction. \(\square \)

Sufficiency: We distinguish three cases.

Case 1 \(\Phi \) satisfies RC.

Proof

We use a function \(G:\Phi \rightarrow \mathbb {R} \) defined as in Lemma 2. Let \(u_{0}\in V\) and \(g:V\rightarrow \mathbb {R} \) be such that for each \(u\in V,\)

$$\begin{aligned} g(u)=G(\varphi ),\quad \text {where }\varphi (u_{0})=u\text {.} \end{aligned}$$

Since \(\Phi \) satisfies NCP and RC, g is well defined. Let R be the transformed utilitarian rule associated with g. We show that R satisfies all the conditions in Theorem 1. Obviously, R satisfies AN and IIA.

First, let us show that R satisfies SP. For each pair \(u,u^{\prime }\in V,\) such that\(\ u<u^{\prime },\) let \(\varphi ,\psi \in \Phi \) be such that \( \varphi (u_{0})=u,\) \(\psi (u_{0})=u^{\prime }.\) According to the definitions of g and G

$$\begin{aligned} g(u)=G(\varphi )<G(\psi )=g(u^{\prime }). \end{aligned}$$

Thus, g is increasing, so that R satisfies SP.

Next, we show that R satisfies INV- \(\Phi \). For each pair \(x,y\in X,\) each \(i\in N,\) and each \(\varphi \in \Phi \), \(x\,R_{U}\,y\), if and only if \(\sum \nolimits _{i\in N}g(U_{i}(x))\ge \sum \nolimits _{i\in N}g(U_{i}(y)).\) This is equivalent to

$$\begin{aligned} \sum \limits _{i\in N}g(U_{i}(x))+G(\varphi )\ge \sum \limits _{i\in N}g(U_{i}(y))+G(\varphi ). \end{aligned}$$

Let \(\varphi ^{U_{i}(x)}\in \Phi \) be such that \(\varphi ^{U_{i}(x)}(u_{0})=U_{i}(x)\). Then,

$$\begin{aligned} g(\varphi \circ U_{i}(x))= & {} g(\varphi \circ \varphi ^{U_{i}(x)}(u_{0})) \\= & {} G(\varphi \circ \varphi ^{U_{i}(x)}) \\= & {} G(\varphi )+G(\varphi ^{U_{i}(x)}) \\= & {} G(\varphi )+g( \varphi ^{U_{i}(x)}(u_{0})) \\= & {} G(\varphi )+g(U_{i}(x)). \end{aligned}$$

Similarly,

$$\begin{aligned} g(\varphi \circ U_{i}(y))=G(\varphi )+g(U_{i}(y)). \end{aligned}$$

Hence, \(x\,R_{U}\,y\) if and only if

$$\begin{aligned} \sum \limits _{j\ne i}g(U_{j}(x))+g(\varphi \circ U_{i}(x))\ge \sum \limits _{j\ne i}g(U_{j}(y))+g(\varphi \circ U_{i}(y)), \end{aligned}$$

so that \(x\,R_{(\varphi \circ U_{i},U_{-i})}\,y.\) Therefore, \(x\,R_{U}\,y\) if and only if \(x\,R_{(\varphi \circ U_{i},U_{-i})}\,y.\) \(\square \)

Case 2 \(\Phi \) does not satisfy RC and \(\min \left\{ G(\varphi )|\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \right\} \) exists.

Let \(\varphi _{1}=\min \left\{ G(\varphi )|\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \right\} \) and \(u_{0}\in V\). Define \(g:V\rightarrow \mathbb {R} \) in the following way. First, for each \(n\in \mathbb {Z} ,\) let

$$\begin{aligned} g(\varphi _{1}^{n}(u_{0}))\equiv n. \end{aligned}$$

Then, for \(u_{0},\varphi _{1}(u_{0})\in V,\) we have \(g(u_{0})=0\) and \( g(\varphi _{1}(u_{0}))=1.\) Next, for each \(u\in \left[ u_{0},\varphi _{1}(u_{0})\right] ,\) let

$$\begin{aligned} g(u)\equiv \frac{u-u_{0}}{\varphi _{1}(u_{0})-u_{0}}. \end{aligned}$$

Obviously, g is continuous and increasing in \(\left[ u_{0},\varphi _{1}(u_{0})\right] .\) Finally, for each \(u\in V,\) let \(n\in \mathbb {Z} \) and \(u^{\prime }\in \left[ u_{0},\varphi _{1}(u_{0})\right] \) be such that \(u=\varphi _{1}^{n}(u^{\prime })\), and

$$\begin{aligned} g(u)\equiv n+g(u^{\prime }). \end{aligned}$$

We can easily check that this function \(g:V\rightarrow \mathbb {R} \) is well defined.

Let R be the transformed utilitarian rule associated with g. We show that R satisfies all the conditions in Theorem 1. It is obvious that R satisfies AN and IIA.

First, let us show that R satisfies SP. To do so, it suffices to show that g is increasing. According to the definition of gg is increasing in \( \left[ u_{0},\varphi _{1}(u_{0})\right] .\) Then, since for each pair \( u,u^{\prime }\in \left[ \varphi _{1}(u_{0}),\varphi _{1}^{2}(u_{0})\right] ,\) if\(\ u<u^{\prime },\) then

$$\begin{aligned} g(u)= & {} 1+g(\varphi ^{-1}(u)) \\< & {} 1+g(\varphi ^{-1}(u^{\prime })) \\= & {} g(u^{\prime }). \end{aligned}$$

Hence, g is also increasing in \(\left[ \varphi _{1}(v_{0}),\varphi _{1}^{2}(v_{0})\right] .\) By taking similar steps, we can show that g is increasing everywhere.

Next, we show that R satisfies INV- \(\Phi \). For each pair \(x,y\in X,\) each \(i\in N,\) and each \(\varphi =\varphi _{1}^{n}\in \Phi ,\) \( x\,R_{U}\,y\) if and only if \(\sum \nolimits _{i\in N}g(U_{i}(x))\ge \sum \nolimits _{i\in N}g(U_{i}(y)).\) This is equivalent to

$$\begin{aligned} \sum \limits _{i\in N}g(U_{i}(x))+n\ge \sum \limits _{i\in N}g(U_{i}(y))+n. \end{aligned}$$

According to the definition of \(\varphi ,\)

$$\begin{aligned} g(\varphi \circ U_{i}(x))= & {} g(\varphi _{1}^{n}\circ U_{i}(x)) \\= & {} n+g(U_{i}(x)). \end{aligned}$$

Similarly,

$$\begin{aligned} g(\varphi \circ U_{i}(y))=n+g(U_{i}(y)). \end{aligned}$$

Hence, \(x\,R_{U}\,y\) if and only if

$$\begin{aligned} \sum \limits _{j\ne i}g(U_{j}(x))+g(\varphi \circ U_{i}(x))\ge \sum \limits _{j\ne i}g(U_{j}(y))+g(\varphi \circ U_{i}(y)). \end{aligned}$$

Therefore, \(x\,R_{U}\,y\) if and only if \(x\,R_{(\varphi \circ U_{i},U_{-i})}\,y.\) \(\square \)

Case 3 \(\Phi \) does not satisfy RC and \(\min \left\{ G(\varphi )|\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \right\} \) does not exist.

Let \(G:\Phi \rightarrow \mathbb {R} \) be a mapping defined as in Lemma 2 \(.\ \)Let \(u_{0}\in V.\) For each \(u\in V,\) let

$$\begin{aligned} g(u)\equiv \sup \left\{ G(\varphi )|\varphi (u_{0})\le u\right\} . \end{aligned}$$

Step 1. g is non-decreasing.

Proof

Let \(u,u^{\prime }\in V\) be such that \(u\le u^{\prime }.\) Since

$$\begin{aligned} \left\{ G(\varphi )|\varphi (v_{0})\le u\right\} \subseteq \left\{ G(\varphi )|\varphi (u_{0})\le u^{\prime }\right\} , \end{aligned}$$

we have

$$\begin{aligned} g(u)= & {} \sup \left\{ G(\varphi )|\varphi (u_{0})\le u\right\} \\\le & {} \sup \left\{ G(\varphi )|\varphi (u_{0})\le u^{\prime }\right\} \\\le & {} g(u^{\prime }). \end{aligned}$$

Step 2. g is continuous.

Proof

Suppose that g is not continuous at \(u^{*}\in V\). Then, since

$$\begin{aligned} \underset{u\rightarrow u^{*}-0}{\lim }g(u)<\underset{u\rightarrow u^{*}+0}{\lim }g(u) \end{aligned}$$

and g is non-decreasing, there is no \(u^{\prime }\in V\) such that

$$\begin{aligned} g(u^{\prime })\in \left( \underset{u\rightarrow u^{*}-0}{\lim }g(u), \underset{u\rightarrow u^{*}+0}{\lim }g(u)\right) . \end{aligned}$$

On the contrary, as shown in Step 5 of Lemma 2, \(\inf \left\{ G(\varphi )|\varphi \in \Phi ^{+}\backslash \left\{ id_{V}\right\} \right\} =0\), so there is \(\varphi ^{\prime }\in \Phi \) such that

$$\begin{aligned} G(\varphi ^{\prime })\in \left( \underset{u\rightarrow u^{*}-0}{\lim } g(u),\underset{u\rightarrow u^{*}+0}{\lim }g(u)\right) . \end{aligned}$$

For \(\varphi ^{\prime }(u_{0})\in V,\) we have

$$\begin{aligned} g(\varphi ^{\prime }(u_{0}))= & {} \sup \left\{ G(\varphi )|\varphi (u_{0})\le \varphi ^{\prime }(u_{0})\right\} \\= & {} G(\varphi ^{\prime })\in \left( \underset{u\rightarrow u^{*}-0}{\lim } g(u),\underset{u\rightarrow u^{*}+0}{\lim }g(u)\right) , \end{aligned}$$

which is a contradiction. \(\square \)

Step 3. For each \(u\in V\ \) and each \(\varphi \in \Phi ,\) \(g(\varphi (u))=g(u)+G(\varphi )\).

Proof

For each \(u\in V\ \)and each \(\varphi \in \Phi ,\)

$$\begin{aligned} g(\varphi (u))= & {} \sup \left\{ G(\varphi ^{\prime })|\varphi ^{\prime }(u_{0})\le \varphi (u)\right\} \\= & {} \sup \left\{ G(\varphi ^{\prime \prime }\circ \varphi )|\varphi ^{\prime \prime }\circ \varphi (u_{0})\le \varphi (u)\right\} \\= & {} \sup \left\{ G(\varphi ^{\prime \prime })+G(\varphi )|\varphi ^{\prime \prime }(u_{0})\le u\right\} \\= & {} G(\varphi )+\sup \left\{ G(\varphi ^{\prime \prime })|\varphi ^{\prime \prime }(u_{0})\le u\right\} \\= & {} G(\varphi )+g(u). \end{aligned}$$

\(\square \)

If g is increasing, then the transformed utilitarian rule associated with g satisfies SP and IIA. However, it is not obvious whether g is increasing, and thus we need to consider the case where g is not increasing.

We introduce the following notation. For each \(x\in \mathbb {R} ,\) let \(g^{-1}(x)\equiv \left\{ u^{\prime }\in V|g(u^{\prime })=x\right\} .\) Since g is non-decreasing and continuous, for each \(x\in \mathbb {R} ,\) \(g^{-1}(x)\ \)is a closed interval. Let \(S\equiv \left\{ u\in V|\exists u^{\prime }\in V, u^{\prime }\ne u\text {, }g(u^{\prime })=g(u)\right\} .\) Clearly, g is increasing if and only if S is empty.

Step 4. For each \(\varphi \in \Phi \) and each \( x\in \mathbb {R} ,\) if \(g^{-1}(x)=\left[ \widetilde{u},\overline{u}\right] ,\) then \(g^{-1}(x+G(\varphi ))=\left[ \varphi (\widetilde{u}),\varphi ( \overline{u})\right] .\)

Proof

For each \(x\in \mathbb {R} ,\) let \(\widetilde{u}=\arg \min g^{-1}(x)\) and \(\overline{u}=\arg \min g^{-1}(x).\) Then, from Step 3, for each \(\varphi \in \Phi ,\)

$$\begin{aligned} g(\varphi (\widetilde{u}))= & {} G(\varphi )+g(\widetilde{u}) \\= & {} G(\varphi )+x \\= & {} G(\varphi )+g(\overline{u}) \\= & {} g(\varphi (\overline{u})). \end{aligned}$$

Hence, \(g^{-1}(x+G(\varphi ))\supseteq \left[ \varphi (\widetilde{u} ),\varphi (\overline{u})\right] .\)

For each \(u^{\prime }<\varphi (\widetilde{u}),\) since \(\varphi ^{-1}(u^{\prime })<\widetilde{u}\),

$$\begin{aligned} g(u^{\prime })= & {} G(\varphi )+g(\varphi ^{-1}(u^{\prime })) \\< & {} G(\varphi )+g(\widetilde{u}). \end{aligned}$$

Hence, \(u^{\prime }\notin g^{-1}(x+G(\varphi ))\). We can similarly show that for each \(u^{\prime }>\varphi (\overline{u}),\) \(u^{\prime }\notin g^{-1}(x+G(\varphi )).\) \(\square \)

Define the binary relation \(\approx \) over S such that for each pair \( u,u^{\prime }\in S,\)

$$\begin{aligned} u\approx u^{\prime }\text { if and only if there is }\varphi \in \Phi \text { such that }u^{\prime }=\varphi (u). \end{aligned}$$

From Step 4, for each \(u\in S\) and each \(\varphi \in \Phi ,\) \(\varphi (u)\in S,\) so that \(\approx \) is an equivalence relation. Let \(S/\approx \) be the quotient set of S by \(\approx .\) An element of \(S/\approx \) is denoted by \(\left[ u_{\lambda }\right] ,\) where \(u_{\lambda }\in S\) denotes a representative. We denote that for each pair \(u_{\lambda },u_{\lambda ^{\prime }}\in S\), if \(u_{\lambda }\) is a representative and \( g(u_{\lambda })=g(u_{\lambda ^{\prime }})\), then \(u_{\lambda ^{\prime }}\) is a representative. Define \(g_{2}:V\rightarrow \left[ 0,1\right] \) by

$$\begin{aligned} g_{2}(u)=\left\{ \begin{array}{ll} \frac{u_{\lambda }-\min g^{-1}(g(u_{\lambda }))}{\max g^{-1}(g(u_{\lambda }))-\min g^{-1}(g(u_{\lambda }))}, &{}\quad \text {if }u\in \left[ u_{\lambda } \right] \\ 0, &{} \quad \text {if }u\notin S\text {.} \end{array} \right. \end{aligned}$$

Step 5. For each \(\varphi \in \Phi \) and each \( u\in V,\) \(g_{2}(\varphi (u))=g_{2}(u).\)

Proof

From Step 4, for each \(u\in V,\) if \(u\notin S,\) then \( \varphi (u)\notin S.\) Hence,

$$\begin{aligned} g_{2}(\varphi (u))=g_{2}(u)=0. \end{aligned}$$

For each \(u\in V,\) if \(u\in \left[ u_{\lambda }\right] ,\) then there is \( \varphi ^{\prime }\in \Phi \) such that \(\varphi ^{\prime }(u)=u_{\lambda }.\) Then, for each \(\varphi \in \Phi ,\)

$$\begin{aligned} \varphi ^{\prime }\circ \varphi ^{-1}(\varphi (u))=\varphi ^{\prime }(u)=u_{\lambda }, \end{aligned}$$

so that \(\varphi (u)\in \left[ u_{\lambda }\right] .\) Hence,

$$\begin{aligned} g_{2}(\varphi (u))= & {} \frac{u_{\lambda }-\min g^{-1}(g(u_{\lambda }))}{\max g^{-1}(g(u_{\lambda }))-\min g^{-1}(g(u_{\lambda }))} \\= & {} g_{2}(u). \end{aligned}$$

\(\square \)

Step 6. Let R be an SWFL such that for each \(U\in \mathcal {U}^{N}\) and each pair \(x,y\in X,\) \(x\,P_{U}\,y\) if and only if (1) \(\sum \nolimits _{i\in N} g(U_{i}(x))>\sum \nolimits _{i\in N} g(U_{i}(y))\) or (2)\(\ \sum \nolimits _{i\in N} g(U_{i}(x))=\sum \nolimits _{i\in N}g(U_{i}(y))\) and \(\sum \nolimits _{i\in N}g_{2}(U_{i}(x))>\underset{i\in N}{\sum } g_{2}(U_{i}(y)).\) Then, R satisfies SP, AN, IIA, and INV-\(\Phi .\)

Proof

Obviously, R satisfies AN and IIA. To prove that R satisfies SP, it suffices to show that for each pair \(u,u^{\prime }\in V\) such that\(\ u<u^{\prime },\) either (1)\(\ g(u)<g(u^{\prime })\) or (2) \( g(u)=g(u^{\prime })\) and\(\ g_{2}(u)<g_{2}(u^{\prime })\) holds. Since g is non-decreasing, either \(g(u)<g(u^{\prime })\) or \(g(u)=g(u^{\prime })\) holds. In addition, if \(g(u)=g(u^{\prime }),\) then there are \(\left[ u_{\lambda } \right] ,\) \(\left[ u_{\lambda ^{\prime }}\right] \) and \(\varphi \in \Phi \) such that \(u_{\lambda }<u_{\lambda ^{\prime }},\) \(\varphi (u)=u_{\lambda }\), and \(\varphi (u^{\prime })=u_{\lambda ^{\prime }}.\) Hence,

$$\begin{aligned} g_{2}(u)= & {} \frac{u_{\lambda }-\min g^{-1}(g(u_{\lambda }))}{\max g^{-1}(g(u_{\lambda }))-\min g^{-1}(g(u_{\lambda }))} \\< & {} \frac{u_{\lambda ^{\prime }}-\min g^{-1}(u_{\lambda ^{\prime }})}{\max g^{-1}(g(u_{\lambda }))-\min g^{-1}(g(u_{\lambda }))} \\= & {} g_{2}(u). \end{aligned}$$

Next, we show that R satisfies INV-\(\Phi .\) For each pair \(x,y\in X,\) each \(U\in \mathcal {U}^{N}\), each\(\ i\in N,\) and each \(\varphi \in \Phi \), from Step 3, \(\sum \nolimits _{i\in N}g(U_{i}(x))\ge \sum \nolimits _{i\in N}g(U_{i}(y))\) if and only if \(\sum \nolimits _{j\ne i}g(U_{j}(x))+g(\varphi \circ U_{i}(x))\ge \sum \nolimits _{j\ne i}g(U_{j}(y))+g(\varphi \circ U_{i}(y)).\) In addition, from Step 5, \(\sum \nolimits _{i\in N}g_{2}(U_{i}(x))\ge \sum \nolimits _{i\in N}g_{2}(U_{i}(y))\) if and only if \(\sum \nolimits _{j\ne i}g_{2}(U_{j}(x))+g_{2}(\varphi \circ U_{i}(x))\ge \sum \nolimits _{j\ne i}g_{2}(U_{j}(y))+g_{2}(\varphi \circ U_{i}(y)).\)

Hence, \(x\,R_{U}\,y\), if and only if \(x\,R_{(\varphi \circ U_{i},U_{-i})}\,y.\) \(\square \)

1.4 Proof of Theorem 2

Suppose that distinct R and \(R^{\prime }\) satisfy SP, AN, IIA, and INV- \(\Phi .\) According to the welfarism theorem, the SWOs \(\succsim _{R}\) and \(\succsim _{R^{\prime }}\), generated by R and \(R^{\prime }\), respectively, are distinct orderings. Then, there are \((u_{1},u_{2},\ldots ,u_{n})\) and \((u_{1}^{\prime },u_{2}^{\prime },\ldots ,u_{n}^{\prime })\in V^{N}\) such that \( (u_{1},u_{2},\ldots ,u_{n})\succsim _{R}(u_{1}^{\prime },u_{2}^{\prime },\ldots ,u_{n}^{\prime })\) and \((u_{1}^{\prime },u_{2}^{\prime },\ldots ,u_{n}^{\prime })\succ _{R^{\prime }}(u_{1},u_{2},\ldots ,u_{n}).\) Let \( u_{0}\in V\). Since \(\Phi \) satisfies RC, for each \(i\in N,\) there are \( \varphi _{i},\psi _{i}\in \Phi \) such that \(\varphi _{i}(u_{0})=u_{i}\) and \( \psi _{i}(u_{0})=u_{i}^{\prime }\). Then, from INV- \(\Phi \) and AN, we can show

$$\begin{aligned} (u_{1},u_{2},\ldots ,u_{n})\sim _{R}(u_{0},\varphi _{1}\circ \varphi _{2}(u_{0}),\ldots ,u_{n}), \end{aligned}$$

in a similar way to the proof of the necessity part of Theorem 1. By taking similar steps, we obtain

$$\begin{aligned} (u_{1},u_{2},\ldots ,u_{n})\sim & {} _{R}(u_{0},u_{0},\ldots ,\varphi _{1}\circ \varphi _{2}\circ \cdots \circ \varphi _{n}(u_{0})), \\ (u_{1}^{\prime },u_{2}^{\prime },\ldots ,u_{n}^{\prime })\sim & {} _{R}(u_{0},u_{0},\ldots ,\psi _{1}\circ \psi _{2}\circ \cdots \circ \psi _{n}(u_{0})), \\ (u_{1},u_{2},\ldots ,u_{n})\sim & {} _{R^{\prime }}(u_{0},u_{0},\ldots ,\varphi _{1}\circ \varphi _{2}\circ \cdots \circ \varphi _{n}(u_{0})),\text { and} \\ (u_{1}^{\prime },u_{2}^{\prime },\ldots ,u_{n}^{\prime })\sim & {} _{R^{\prime }}(u_{0},u_{0},\ldots ,\psi _{1}\circ \psi _{2}\circ \cdots \circ \psi _{n}(u_{0})). \end{aligned}$$

Hence,

$$\begin{aligned} (u_{0},u_{0},\ldots ,\varphi _{1}\circ \varphi _{2}\circ \cdots \circ \varphi _{n}(u_{0}))\succsim _{R}(u_{0},u_{0},\ldots ,\psi _{1}\circ \psi _{2}\circ \cdots \circ \psi _{n}(u_{0})), \end{aligned}$$

which implies from SP

$$\begin{aligned} \varphi _{1}\circ \varphi _{2}\circ \cdots \circ \varphi _{n}(u_{0})\ge \psi _{1}\circ \psi _{2}\circ \cdots \circ \psi _{n}(u_{0}). \end{aligned}$$

Similarly,

$$\begin{aligned} \varphi _{1}\circ \varphi _{2}\circ \cdots \circ \varphi _{n}(u_{0})<\psi _{1}\circ \psi _{2}\circ \cdots \circ \psi _{n}(u_{0}), \end{aligned}$$

which is a contradiction. Hence, there is at most one SWFL. \(\square \)

1.5 Proof of Theorem 3

First, let us capture the feature of equivalence relations satisfying SYM, REP, and SEP.

Lemma 3

Let \(\mathcal {I}\) satisfy SYM and REP and \(\Phi ^{N}\) represents \(\mathcal {I}\) . \(\mathcal {I}\) satisfies SEP if and only if there is \( \Phi \subseteq \Psi \) , satisfying RC, such that \(\prod \nolimits _{ i\in N} \Phi \subseteq \Phi ^{N}.\)

Proof

We introduce the following notation. For each \(i\in N\) and each \(\varphi \in \Psi \), define \(\varphi ^{i}=\left( \varphi _{1}^{i},\ldots ,\varphi _{n}^{i}\right) \in \Psi ^{N}\) by

$$\begin{aligned} \varphi _{j}^{i}=\left\{ \begin{array}{ll} \varphi &{} \quad \text {if }j=i \\ id_{V} &{}\quad \text {if }j\ne i \end{array} \right. \end{aligned}$$

Necessity: It suffices to show that there is a rich \(\Phi \subseteq \Psi ,\) such that for each \(i\in N\) and each \(\varphi \in \Phi ,\) \(\varphi ^{i}\in \Phi ^{N}.\) For each \(i\in N\) and each pair \(u,u^{\prime }\in V\), let \(U,U^{\prime }\in \mathcal {U}^{N}\) be such that for each \(x\in A,\) \( U_{i}(x)=u\) and \(U_{i}^{\prime }(x)=u^{\prime }\); and for each \(j\ne i,\) \( U_{j}=U_{j}^{\prime }.\) According to SEP, \(U\,\mathcal {I}\,U^{\prime }\), so that there is \((\varphi _{1},\ldots ,\varphi _{n})\in \Phi ^{N}\) such that \( U^{\prime }=(\varphi _{1}\circ U_{1},\ldots ,\varphi _{n}\circ U_{n}).\) Since for each \(j\ne i,\) \(U_{j}=U_{j}^{\prime }=\varphi _{j}\circ U_{j},\) we have for each \(j\ne i,\) \(\varphi _{j}=id_{V}.\) Hence, there is \(\varphi \in \Psi \) such that \(\varphi ^{i}\in \Phi ^{N}\) and

$$\begin{aligned} \varphi (u)=\varphi (U_{i}(x))=U_{i}^{\prime }(x)=u^{\prime }. \end{aligned}$$

\(\square \)

Sufficiency: Suppose that there is a rich \(\Phi \subseteq \Psi \) such that \(\prod \nolimits _{i\in N} \Phi \subseteq \Phi ^{N}.\) Let \( U,U^{\prime }\in \mathcal {U}^{N}\) be such that there is \(S\subseteq N\), such that for each \(i\in S\) and each \(x\in X\), \(U_{i}(x)=U_{i}^{\prime }(x);\) and for each \(i\in N\backslash S\) and each pair \(x,y\in X\), \( U_{i}(x)=U_{i}(y)\) and \(U_{i}^{\prime }(x)=U_{i}^{\prime }(y)\). For each \( i\in S,\) let \(\varphi _{i}=id_{V}\in \Phi .\) Then, \(\varphi _{i}\circ U_{i}=U_{i}=U_{i}^{\prime }.\ \)For each \(i\in N\backslash S,\) let \(\varphi _{i}\in \Phi \) be such that \(\varphi _{i}\left( U_{i}(x)\right) =U_{i}^{\prime }(x).\) Then, since for each pair \(x,y\in X\), \( U_{i}(x)=U_{i}(y)\) and \(U_{i}^{\prime }(x)=U_{i}^{\prime }(y)\), for each \( y\in X\),

$$\begin{aligned} \varphi _{i}\left( U_{i}(y)\right)= & {} \varphi _{i}\left( U_{i}(x)\right) \\= & {} U_{i}^{\prime }(x)=U_{i}^{\prime }(y). \end{aligned}$$

Therefore, for \((\varphi _{1},\ldots ,\varphi _{n})\in \underset{i\in N}{ \prod }\Phi \subseteq \Phi ^{N},\) we have \(U^{\prime }=(\varphi _{1}\circ U_{1},\ldots ,\varphi _{n}\circ U_{n}),\) so that \(U\,\mathcal {I}\,U^{\prime }.\) \(\square \)

We also need the following lemma shown by Blackorby et al. (2002). This lemma specifies the feature of informational structures that permits using a transformed utilitarian rule.

Lemma 4

Let \(g\in \mathcal {G}\). The transformed utilitarian rule associated with g satisfies INV-\(\Phi ^{N}\) if and only if \(\Phi ^{N}\subseteq \Phi ^{CUC-g}.\)

Now, we are ready to prove Theorem 3.

Necessity: Let \(\Phi ^{N}\) represent \(\mathcal {I}\). From Lemma 3, there is a rich \(\Phi \subseteq \Psi \) such that \(\prod \nolimits _{i\in N} \Phi \subseteq \Phi ^{N}\). Since INV-\(\Phi ^{N}\) implies INV-\(\Phi \), we know from Theorems 1 and 2 and Proposition 1 that if an SWFL satisfies SP, AN, IIA, and INV-\(\Phi \), then it is a transformed utilitarian rule associated with a certain transformation\(\ g\in \mathcal {G}\). Hence, from Lemma 4, we must have\(\ \Phi ^{N}\subseteq \Phi ^{CUC-g}. \) \(\square \)

Sufficiency: If \(\Phi ^{N}\subseteq \Phi ^{CUC-g}\), then from Lemma 4, the transformed utilitarian rule associated with g satisfies SP, AN, IIA, and INV-\(\Phi ^{N}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamura, H. Interpersonal comparison necessary for Arrovian aggregation. Soc Choice Welf 49, 37–64 (2017). https://doi.org/10.1007/s00355-017-1048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00355-017-1048-6

Navigation