Skip to main content
Log in

A review on saturated boiling of liquids on tube bundles

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A review of recent investigation on boiling of saturated liquids over plain and enhanced tube bundles has been carried out taking the earlier review works as reference point. The experimental observations of various geometry and performance parameters studied by researchers are analyzed keeping current demand of industries in design and development of compact, efficient heat exchanging devices. The study shows that tube spacing plays an important role in determination of compactness of the heat exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

b:

Constants in equation

B:

Scaling factor in equation

CA :

Factors in the Eq. (2)

Cq :

Factors in the Eq. (2)

csf :

Constant depending on type of surface

D:

Diameter of the tube (mm)

Db :

Bubble diameter (mm)

Fp :

Pressure correction factor

Fb :

Bundle boiling factor

G:

Mass flux (kg/s m2)

HTC:

Heat transfer coefficient

h:

Heat transfer coefficient (W/m2 K)

L:

Length of the tube (mm)

Lfg :

Latent heat of vapourisation

m:

Mass flow rate (kg/s)

M:

Molecular mass (gm)

N:

Row number in the bundle

Nu:

Nusselt number

Pr :

Reduced pressure (Psat/Pcrit)

Pr:

Prandlt number

q:

Heat flux from heater surface (W/m2)

Ra:

Roughness average value (μm)

Re:

Reynolds number

s:

Slip ratio

U:

Superficial velocity

Vo:

Voidage number

x:

Vapor quality

YIB :

Boiling intensity parameter

Z:

Convective parameter in Eq. (12)

μ:

Viscosity (P)

ε:

Void fraction

ρ:

Density (kg/m3)

nb:

Nucleate boiling

pb:

Pool boiling

cv:

Convection

cb:

Convective boiling

2φ:

Two phase

f:

Liquid phase

g/G:

Vapour or gaseous phase

ext:

External

Dry:

Dry out condition

References

  1. Lea ES (1941) Finned condenser tube, U.S.Patent 2, 241, 209

  2. Jones W (1941) Cooler and condenser heat transfer with low pressure Freon refrigerant

  3. Bukin VG, Danilova GN, Dyudin VA (1982) Heat transfer from Freons in a film flowing over bundles of horizontal tubes that carry a porous coating. Heat Transf Sov Res 14:98–103

    Google Scholar 

  4. Thome JR (1990) Enhanced boiling heat transfer. Hemisphere, Washington DC

    Google Scholar 

  5. Webb RL (1994) Principles of enhanced heat transfer. Wiley, New York

    Google Scholar 

  6. Collier JG, Thome JR (1994) Convective boiling and condensation, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  7. Browne MW, Bansal PK (1999) Heat transfer characteristics of boiling phenomenon in flooded refrigerant evaporators. Appl Therm Eng 19:595–624

    Google Scholar 

  8. Ribatski G, Thome JR (2007) Two-phase flow and heat transfer across horizontal tube bundles—a review. Heat Transf Eng 28(6):508–524

    Google Scholar 

  9. Webb RL, Gupte NS (1992) A critical review of correlations for convective vaporization in tubes and tube banks. Heat Transf Eng 13(3):58–81

    Google Scholar 

  10. Khushnood S, Khan Z et al (2004) A review of heat exchanger tube bundle vibrations in two-phase cross-flow. Nucl Eng Des 230:233–251

    Google Scholar 

  11. Watel B (2003) Review of saturated flow boiling in small passages of compact heat-exchangers. Int J Therm Sci 42(2):107–140. doi:10.1016/S1290-0729(02)00013-3

    Google Scholar 

  12. Thome JR, Cheng L, Ribatski G, Vales LF (2008) Flow boiling of ammonia and hydrocarbons: a state-of-the-art review. Int J Refrig 31(4):603–620

    Google Scholar 

  13. Murshed SMS, Castro ND et al (2011) A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev 15(5):2342–2354

    Google Scholar 

  14. Burnside RM, Shire NF (2005) Heat transfer in flow boiling over a bundle of horizontal tubes. Chem Eng Res Des 83(A5):527–538

    Google Scholar 

  15. Mostinski IL (1963) Application of the rule of corresponding states for the calculation of heat transfer and critical heat flux. Br Chem Eng 8:580

    Google Scholar 

  16. Hsieh SS, Hsu PT (1994) Nucleate boiling characteristics of R-14, distilled water and R-134a on plain and rib- roughened tube geometries. Int J Heat Mass Transf 37(10):1423–1432

    Google Scholar 

  17. Webb RL, Oais C (1992) Nucleate pool boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries. Int J Heat Mass Transf 35(8):1893–1904

    Google Scholar 

  18. Chang JY, You SM (1997) Enhanced boiling heat transfer from micro-porous cylindrical surfaces in saturated FC-87 and R-123. ASME J Heat Transf 119(2):319–324

    MathSciNet  Google Scholar 

  19. Chien LH, Webb RL (1998) A nucleate boiling model for structure enhanced surface. Int J Heat Mass Transf 41(14):2183–2195

    MATH  Google Scholar 

  20. Memory SB, Sugivama DC, Marto PJ (1995) Nucleate pool boiling of R-114 and R-114-oil mixture from smooth and enhanced surfaces-1; single tube. Int J Heat Mass Transf 38(8):1347–1362

    Google Scholar 

  21. Memory SB, Akcasayar N, Eraydin N, Marto PJ (1995) Nucleate pool boiling of R-114 and R-114-oil mixture from smooth and enhanced surfaces-2; tube bundle. Int J Heat Mass Transf 38(8):1363–1376

    Google Scholar 

  22. Fujita Y, Ohta H, Ushita S (1988) Nucleate boiling heat transfer and critical heat flux in narrow space between rectangular surface. Int J Heat Mass Transf 31(2):229–239

    Google Scholar 

  23. Ishibashi E, Liu ZH (1993) Pool boiling heat transfer characteristics of the surface-worked heat-transfer tubes in narrow spaces under reduced pressure conditions. Heat Transf Jpn Res 22(7):703–715

    Google Scholar 

  24. Liu ZH, Ishibashi E (2001) Enhanced boiling heat transfer of water/salt mixtures in restricted space of the compact tube bundle. Heat Transf Eng 22(3):4–10

    Google Scholar 

  25. Liu ZH, Qiu YH (2004) Boiling heat transfer enhancement of water/salt mixtures on roll-worked enhanced tubes in compact staggered tube bundles. Chem Eng Technol 27(11):1187–1194

    Google Scholar 

  26. Liu ZH, Qiu YH (2006) Boiling heat transfer enhancement of water on tubes in compact in-line bundles. Heat Mass Transf 42(3):248–254

    Google Scholar 

  27. Liu ZH, Liao L (2006) Enhancement boiling heat transfer study of a newly compact in-line bundle evaporator under reduced pressure conditions. Chem Eng Technol 29(3):408–413

    Google Scholar 

  28. Liao L, Liu ZH (2007) Enhanced boiling heat transfer of the compact staggered tube bundle under sub-atmospheric conditions. Heat Transf Eng 28(5):444–450

    MathSciNet  Google Scholar 

  29. Hahne E, Muller J (1983) Boiling on a finned tube and finned tube bundle. Int J Heat Mass Transf 26(6):849–859

    Google Scholar 

  30. Ribatski G, Saiz Jabardo JM, Fockink E (2008) Modeling and experimental study of nucleate boiling on a vertical array of horizontal plain tubes. Exp Therm Fluid Sci 32:1530–1537

    Google Scholar 

  31. Stephan K, Abdelsalam M (1980) Heat-transfer correlations for natural convective boiling. Int J Heat Mass Transf 23:73–87

    Google Scholar 

  32. Cooper MG (1984) Heat flow rates in saturated nucleate pool boiling—a wide ranging examination using reduced properties. Adv Heat Transf 16:157–238

    Google Scholar 

  33. Ribatski G, Jabardo MS (2003) Experimental study of nucleate boiling of halocarbon refrigerants on cylindrical surfaces. Int J Heat Mass Transf 46:4439–4451

    Google Scholar 

  34. Müller J (1986) Boiling heat transfer on finned tube bundle—the effect of tube position and intertube spacing. In: Proceedings of the 8th international heat transfer conference, vol 4, San Francisco, California, USA, pp 2111–2116

  35. Wallner R (1971) Heat transfer in flooded shell and tube evaporators. In: Proceedings of the 13th international congress of refrigeration, Washington, DC, USA, pp 214–221

  36. Gupta A, Saini JS, Varma HK (1995) Boiling heat transfer in small horizontal tube bundles at low cross-flow velocities. Int J Heat Mass Transf 38:599–605

    Google Scholar 

  37. Hahne E, Qiu-Rong C, Windisch R (1991) Pool boiling heat transfer on finned tubes an experimental and theoretical study. Int J Heat Mass Transf 34:2071–2079

    Google Scholar 

  38. Kumar S, Mohanty B, Gupta SC (2002) Boiling heat transfer from a vertical row of horizontal tubes. Int J Heat Mass Transf 45:3857–3864

    Google Scholar 

  39. Hsieh SS, Huang GZ, Tsai HH (2003) Nucleate pool boiling characteristics from coated tube bundles in saturated R-134a. Int J Heat Mass Transf 46:1223–1239

    Google Scholar 

  40. Aprin L, Mercier P, Tadrist L (2007) Experimental analysis of local void fractions measurements for boiling hydrocarbons in complex geometry. Int J Multiph Flow 33(4):371–393

    Google Scholar 

  41. Aprin L, Mercier P, Tadrist L (2011) Local heat transfer analysis for boiling of hydrocarbons in complex geometries: a new approach for heat transfer prediction in staggered tube bundle. Int J Heat Mass Transf 54:4203–4219

    MATH  Google Scholar 

  42. Leong LS, Cornwell K (1979) Heat transfer coefficients in a reboiler tube bundle. Chem Eng 20:219–221

    Google Scholar 

  43. Shah MM (2005) Improved general correlation for subcooled boiling heat transfer during flow across tubes and tube bundles. HVAC&R Res 11(2):285–303

    Google Scholar 

  44. Shah MM (2011) A general correlation for heat transfer during saturated boiling with flow across tube bundles. HVAC &R Res 13(5):749–768

    Google Scholar 

  45. Shah MM (1979) A general correlation for heat transfer during film condensation inside pipes. Int J Heat Mass Transf 22:547–556

    Google Scholar 

  46. Rooyen EV, Agostini F, Borhani N, Thome JR (2012) Boiling on a tube bundle: part I—flow visualization and onset of dryout. Heat Transf Eng 33(11):913–929

    Google Scholar 

  47. Rooyen EV, Agostini F, Borhani N, Thome JR (2012) Boiling on a tube bundle: part II—heat transfer and pressure drop. Heat Transf Eng 33(11):930–946

    Google Scholar 

  48. Zukauskas A, Ulinskas R (1983) Heat exchanger design handbook. Hemisphere Publishing Corporation, New York

    Google Scholar 

  49. Noghrehkar GR, Kawaji M, Chan AMC (1999) Investigation of two-phase flow regimes in tube bundles under cross-flow conditions. Int J Multiph Flow 25(5):854–874

    Google Scholar 

  50. Ulbrich R, Mewes D (1994) Vertical, upward gas–liquid two-phase flow across a tube bundle. Int J Multiph Flow 20(2):249–272

    MATH  Google Scholar 

  51. Kim NH, Cho JP, Youn B (2002) Forced convective boiling of pure refrigerants in a bundle of enhanced tubes having pores and connecting gaps. Int J Heat Mass Transf 45(12):2449–2463

    Google Scholar 

  52. Robinson DM, Thome JR (2004) Local bundle boiling heat transfer coefficients on an integral finned tube bundle. HVAC & R Res 10:331–344

    Google Scholar 

  53. Robinson DM, Thome JR (2004) Local bundle boiling heat transfer coefficients on a turbo-BII HP tube bundle. HVAC & R Res 10:441–458

    Google Scholar 

  54. Gupta A (2005) Enhancement of boiling heat transfer in a 5 × 3 tube bundle. Int J Heat Mass Transf 48:3763–3772

    Google Scholar 

  55. Thome JR, Robinson DM (2006) Prediction of local bundle boiling heat transfer coefficients: pure refrigerant boiling on plain, low fin, and turbo-BII HP tube bundles. Heat Transf Eng 27(10):20–29

    Google Scholar 

  56. Feenstra PA, Weaver DS, Judd RL (2000) An improved void fraction model for two phase cross-flow in horizontal tube bundles. Int J Multiph Flow 26:1851–1873

    MATH  Google Scholar 

  57. Schrage DS, Hsu JT, Jensen MK (1988) Two-phase pressure drop in vertical flow across a horizontal tube bundle. AIChE J 34:107–115

    Google Scholar 

  58. Schäfer D, Tamme R (2007) The effect of novel plasma-coated compact tube bundles on pool boiling. Heat Transf Eng 28(1):19–24

    Google Scholar 

  59. Lakhera VJ, Gupta A, Kumar R (2009) Investigation of coated tubes in cross-flow boiling. Int J Heat Mass Transf 52:908–920

    Google Scholar 

  60. Kutateladze SS (1961) Boiling heat transfer. Int J Heat Mass Transf 4:31–45

    Google Scholar 

  61. Gorenflo D (1993) Pool boiling. VDI-Heat Atlas, Dusseldorf

    Google Scholar 

  62. Lakhera VJ, Gupta A, Kumar R (2012) Enhanced boiling outside 8 × 3 plain and coated tube bundles. Heat Transf Eng 33(9):828–834

    Google Scholar 

  63. Yao SC, Chang Y (1983) Pool boiling heat transfer in a confined space. Int J Heat Mass Transf 26:841–848

    Google Scholar 

  64. Kang MG (2000) Effect of surface roughness on pool boiling heat transfer. Int J Heat Mass Transf 43:4073–4085

    MATH  Google Scholar 

  65. Kang MG (2005) Effects of outer tube length on saturated pool boiling heat transfer in a vertical annulus with closed bottom. Int J Heat Mass Transf 85(13):2795–2800

    Google Scholar 

  66. Kang MG (2010) Pool boiling heat transfer on the tube surface in an inclined annulus. Int J Heat Mass Transf 53:3326–3334

    Google Scholar 

  67. Gupta A, Kumar R, Kumar V (2010) Nucleate pool boiling heat transfer over a bundle of vertical tubes. Int Commun Heat Mass Transf 37:178–181

    Google Scholar 

  68. Doo GH, McNaught JM, Dempster WM (2004) Shell side evaporation in a TEMA E-shell: flow patterns and transitions. Appl Therm Eng 24:1195–1205

    Google Scholar 

  69. Grant IDR, Murray I (1974) Pressure drop on the shell side of a segmentally baffled shell-and-tube heat exchanger with horizontal two-phase flow, National Engineering Laboratory, East Kilbride, Glasgow, Report No. 560

  70. Doo GH, Dempster WM, McNaught JM (2008) Improved prediction of shell side heat transfer in horizontal evaporative shell and tube heat exchangers. Heat Transf Eng 29(12):999–1007

    Google Scholar 

  71. Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas–liquid flow. AIChE J 22(1):47–55

    Google Scholar 

  72. Nasr MRJ, Tahmasbi M (2006) Application of heat transfer enhancement on vertical thermosyphon reboilers using tube inserts. Heat Transf Eng 27(6):58–65

    Google Scholar 

  73. Al-Anizi SS, Al-Otaibi AM (2009) Double perforated impingement plate in shell-and-tube heat exchanger. Heat Transf Eng 30(10–11):885–894

    Google Scholar 

  74. McNeil DA, Bamardouf K, Burnside BM, Almeshaal M (2010) Investigation of flow phenomena in a kettle reboiler. Int J Heat Mass Transf 53:836–848

    MATH  Google Scholar 

  75. McNeil DA, Bamardouf K, Burnside BM, Almeshaal M (2011) Two-dimensional flow modelling of a thin slice kettle reboiler. Int J Heat Mass Transf 54:1907–1923

    MATH  Google Scholar 

  76. Cielinski JT, Fluk A (2012) Heat transfer characteristic of a two phase thermosyphon heat exchanger. Appl Therm Eng 52(2013):112–118

    Google Scholar 

  77. Kernn DQ (1997) Process heat transfer. Tata Mc-Graw Hill Publication, New York

    Google Scholar 

  78. Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling of liquids. ASME J Heat Transf 74:969–976

    Google Scholar 

  79. Singh RL, Saini JS, Verma HK (1985) Effect of cross flow on boiling heat transfer of refrigerant-12. Heat Mass Transf 28(2):515–517

    Google Scholar 

  80. Palen JW, Schlunder EU (1983) Heat exchanger design handbook, vol 3. Hemisphere, Washington DC, 3.3.1.-1-3.6.5-6

  81. Das SK, Putra N, Kabelac S (2004) An experimental investigation of pool boiling on narrow horizontal tubes. Exp Heat Transf 17:131–146

    Google Scholar 

  82. Yang SW, Jeong J, Kang YT (2008) Experimental correlation of pool boiling heat transfer for HFC134a on enhanced tubes: turbo-E. Int J Refrig 31:130–137

    Google Scholar 

  83. Saiz Jabardo JM, Ribatski G, Stelute E (2009) Roughness and surface material effects on nucleate boiling heat transfer from cylindrical surfaces to refrigerants R-134a and R-123. Exp Therm Fluid Sci 33(4):579–590

    Google Scholar 

  84. Sateesh G, Das SK, Balakrishnan AR (2009) Experimental studies on the effect of tube inclination on nucleate pool boiling. Heat Mass Transf 45:1493–1502

    Google Scholar 

  85. Das MK, Kishor N (2010) Soft computing techniques for prediction of copper-coated tubes. Appl Artif Intell 24:210–232

    Google Scholar 

  86. Sarma PK, Srinivas V et al (2012) Correlation for heat transfer in nucleate boiling on horizontal cylindrical surface. Heat Transf Eng 31(6):449–457

    Google Scholar 

  87. Cieslinski JT, Kaczmarczyk TZ (2011) Pool boiling of water-Al 2 O 3 and water-Cu nanofluids on horizontal smooth tubes. Nanoscale Res Lett 6(1):220–229

    Google Scholar 

  88. Sarafraz MM, Peyghambarzadeh SM (2012) Nucleate pool boiling heat transfer to Al2O3-water and TiO2-water nanofluids on horizontal smooth tubes with dissimilar homogeneous materials. Chem Biochem Eng 26(3):199–206

    Google Scholar 

  89. Gorgy E, Eckels S (2012) Local heat transfer coefficient for pool boiling of R-134a and R-123 on smooth and enhanced tubes. Int J Heat Mass Transf 55:3021–3028

    Google Scholar 

  90. Lee CY, Zhang BJ et al (2011) Morphological change of plain and nano-porous surfaces during boiling and its effect on nucleate pool boiling heat transfer. Exp Therm Fluid Sci 40:150–158

    Google Scholar 

  91. Dowlati R, Kawaji M et al (1996) Two-phase crossflow and boiling heat transfer in horizontal tube bundles. J Heat Transf 118:124–131

    Google Scholar 

  92. Jensen MK, Trewin RR, Bergles AE (1992) Crossflow boiling in enhanced tube bundle. In: Pool and external flow boiling conference, Santa Barbara, pp 373–379

  93. Webb RL, Chien LH (1994) Correlation of convective vaporization on banks of plain tubes using refrigerants. Heat Transf Eng 15:57–69

    Google Scholar 

  94. Gupte NS, Webb RL (1994) Convective vaporization of pure refrigerants in enhanced and integral-fin tube banks. J Enhanc Heat Transf 1:351–364

    Google Scholar 

  95. Gupte NS, Webb RL (1995) Shell-side boiling in flooded refrigerant evaporators, part I: integral finned tubes. HVAC &R Res 1:35–47

    Google Scholar 

  96. Gupte NS, Webb RL (1995) Shell-side boiling in flooded refrigerant evaporators, part II: integral finned tubes. HVAC &R Res 1:48–60

    Google Scholar 

  97. Fujita Y, Bai Q, Hidaka S (1998) Heat transfer and flow pattern in horizontal tube bundles under pool boiling and flow boiling conditions. In: Proceedings of the international engineering foundation, convective flow and pool boiling conference, Irsee, Germany, pp 435–442

  98. Thonon B, Roser R, Mercier P, (1997) Pool boiling of propane and N-pentane on a bundle of low-finned tubes. In: Proceedings of the international engineering foundation, convective flow and pool boiling conference, Irsee, Germany, pp 63–69

  99. Roser R, Thonon B, Mercier P (1999) Experimental investigations on boiling of N-pentane across a horizontal tube bundle: two-phase flow and heat transfer characteristics. Int J Refrig 22:536–547

    Google Scholar 

  100. Tatara RA, Payvar P (1999) Effects of oil on boiling R-123 and R-134a flowing normal to an integral-finned tube bundle. ASHRAE Trans 105(1):478–488

    Google Scholar 

  101. Tatara RA, Payvar P (2000) Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle, Part I: R-123. ASHRAE Trans 106(1):777–785

    Google Scholar 

  102. Tatara RA, Payvar P (2000) Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle, part II: R-134a. ASHRAE Trans 106(1):786–791

    Google Scholar 

  103. Aprin L, Mercier P, Tadrist L (2002) Analysis of experimental results of N-pentane and propane boiling across a horizontal tube bundle. In: 12th international heat transfer conference, Grenoble, France

  104. Gnielinski V (1976) New equation for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368

    Google Scholar 

  105. Kim NH, Cho JP, Youn B (2002) Forced convective boiling of pure refrigerants in a bundle of enhanced tubes having pores and connecting gaps. Int J Heat Mass Transf 45:2449–2463

    Google Scholar 

  106. Thome JR, Robinson DM (2003) Flooded evaporation heat transfer performance investigation investigation for tube bundles including the effects of oil using R-410A and R-507A. Liquid Refrig Heat Transf ASHRAE

  107. Robinson DM, Thome JR (2004) Local bundle boiling heat transfer coefficients on a plain tube bundle. HVAC & R Res 10:33–52

    Google Scholar 

  108. Zheng JX, Jin GP, Chyu MC, Ayub ZH (2006) Boiling of ammonia/lubricant mixture on a horizontal tube in a flooded evaporator with inlet vapor quality. Exp Therm Fluid Sci 30:223–231

    Google Scholar 

  109. Marvillet C (1989) Influence of oil on nucleate pool boiling of refrigerants R12 and R22 from porous layer tube. Advances in Pool Boiling Heat Transfer, Paderborn, Germany, pp 164–168

  110. Gan YP, Chen XY, Tian SR (1993) An experimental study of nucleate boiling heat transfer from flame spraying surface of tube bundle in R113/R11-oil mixtures. In: Proceedings of the 3rd world conference on experimental heat transfer, fluid mechanics and thermodynamics, Honolulu, Hawaii, pp 1226–1231

  111. Webb RL, McQuade WL (1993) Pool boiling of R-11 and R-123 oil–refrigerant mixtures on plain and enhanced tube boiling. ASHRAE Trans 99(1):1225–1236

    Google Scholar 

  112. Chyu MC, Zheng J, Ayub Z (2009) Bundle effect of ammonia/lubricant mixture boiling on a horizontal bundle with enhanced tubing and inlet quality. Int J Refrig 32:1876–1885

    Google Scholar 

  113. Kim NH, Kim DY (2010) Pool boiling of R123/oil mixtures on enhanced tubes having different pore sizes. Int J Heat Mass Transf 53:2311–2317

    Google Scholar 

  114. Kim NH, Byun HW, Lee EJ (2011) Convective boiling of R-123/oil mixtures on enhanced tube bundles having pores and connecting gaps. Int J Heat Mass Transf 54:5327–5336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhilas Swain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, A., Das, M.K. A review on saturated boiling of liquids on tube bundles. Heat Mass Transfer 50, 617–637 (2014). https://doi.org/10.1007/s00231-013-1257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1257-1

Keywords

Navigation