Skip to main content
Log in

Fundamental groups of character varieties: surfaces and tori

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We compute the fundamental group of moduli spaces of Lie group valued representations of surface and torus groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that all compact, simply connected Lie groups are semisimple.

References

  1. Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. London Ser. A 308(1505), 523–615 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biswas, I., Lawton, S.: Fundamental group of moduli spaces of representations. Geom. Dedic. (to appear). arXiv:1405.3580

  3. Borel, A., Friedman, R., Morgan, J.W.: Almost commuting elements in compact Lie groups. Mem. Am. Math. Soc. 157(747), x+136 (2002)

  4. Bredon, G.E.: Introduction to compact transformation groups. In: Smith, P.A., Eilenberg, S. (eds.) Pure and Applied Mathematics, Vol. 46, Academic Press, New York (1972)

  5. Casimiro, A., Florentino, C., Lawton, S., Oliveira, A.: Topology of moduli spaces of free group representations in real reductive groups, to appear in Forum Mathematicum. arXiv:1403.3603

  6. Choi, S., Goldman, W.M.: The classification of real projective structures on compact surfaces. Bull. Am. Math. Soc. (N.S.) 34(2), 161–171 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cooper, D., Culler, M., Gillet, H., Long, D.D., Shalen, P.B.: Plane curves associated to character varieties of 3-manifolds. Invent. Math. 118(1), 47–84 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Daluge, D.: The space of conjugacy classes of a topological group. Trans. Am. Math. Soc. 200, 345–353 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Daskalopoulos, G.D.: The topology of the space of stable bundles on a compact Riemann surface. J. Differ. Geom. 36, 699–746 (1992)

    MATH  MathSciNet  Google Scholar 

  10. Florentino, C., Lawton, S.: The topology of moduli spaces of free group representations. Math. Ann. 345(2), 453–489 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Florentino, C., Lawton, S.: Topology of character varieties of abelian groups. Topol. Appl. 173, 32–58 (2014). arXiv:1301.7616

  12. García-Prada, O., Gothen, P.B., i Riera, I.M.: The Hitchin-Kobayashi correspondence, Higgs pairs and surface group representations (2009). arXiv:0909.4487

  13. Goldman, W.M.: Geometric structures on manifolds and varieties of representations. In: Geometry of group representations (Boulder, CO, 1987), volume 74 of Contemporary Mathematics, pp. 169–198. American Mathematical Society, Providence, RI (1988)

  14. Goldman, W.M.: Topological components of spaces of representations. Invent. Math. 93(3), 557–607 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldman, W.M., Millson, J.: Deformations of flat bundles over Kahler manifolds. In: Geometry and topology (Athens, Ga., 1985). Lecture Notes in Pure and Applied Mathematics, vol. 105, pp. 129–145. Dekker, New York (1987)

  16. Gómez, J.M., Pettet, A., Souto, J.: On the fundamental group of \({\rm Hom}({\mathbb{Z}}^k, G)\). Math. Z. 271(1–2), 33–44 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3) 55(1), 59–126 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ho, N.-K., Liu, C.-C.M.: Connected components of the space of surface group representations. Int. Math. Res. Not. 44, 2359–2372 (2003)

    Article  MathSciNet  Google Scholar 

  20. Ho, N.-K., Liu, C.-C.M.: Connected components of spaces of surface group representations. II. Int. Math. Res. Not. 16, 959–979 (2005)

    Article  MathSciNet  Google Scholar 

  21. Kac, V.G., Smilga, A.V.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. In: Shifman, M. (ed.) The Many Faces of the Superworld, pp. 185–234. World Scientific Publishing, River Edge, NJ (2000)

  22. Kapovich, M., Millson, J.J.: On representation varieties of 3-manifold groups. (2013). arXiv:1303.2347

  23. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kempf, G., Ness, L.: The length of vectors in representation spaces. In: Algebraic Geometry (Proceedings Summer Meeting, University Copenhagen, Copenhagen, 1978), volume 732 of Lecture Notes in Mathematics, pp. 233–243. Springer, Berlin (1979)

  25. Lawton, S., Ramras, D.: Covering spaces of character varieties. N. Y. J. Math. 21, 383–416 (2015). arXiv:1402.0781

  26. Li, J.: The space of surface group representations. Manuscr. Math. 78(3), 223–243 (1993)

    Article  MATH  Google Scholar 

  27. Montgomery, D., Yang, C.T.: The existence of a slice. Ann. Math. 2(65), 108–116 (1957)

    Article  MathSciNet  Google Scholar 

  28. Narasimhan, M.S., Seshadri, C.S.: Holomorphic vector bundles on a compact Riemann surface. Math. Ann. 155(1), 69–80

  29. Pettet, A., Souto, J.: Commuting tuples in reductive groups and their maximal compact subgroups. Geom. Topol. 17(5), 2513–2593 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Råde, J.: On the Yang-Mills heat equation in two and three dimensions. J. Reine Angew. Math. 431, 123–163 (1992)

    MATH  MathSciNet  Google Scholar 

  31. Ramras, D.: Yang-Mills theory over surfaces and the Atiyah-Segal theorem. Algebr. Geom. Topol. 8(4), 2209–2251 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rapinchuk, I.A.: On the character varieties of finitely generated groups. arXiv:1308.2692 (2013)

  33. Richardson, R.W., Slodowy, P.J.: Minimum vectors for real reductive algebraic groups. J. London Math. Soc. (2) 42(3), 409–429 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)

    Article  MATH  Google Scholar 

  35. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. II. Inst. Hautes Études Sci. Publ. Math. 80, 5–79 (1994)

    Article  Google Scholar 

  36. Thurston, W.P.: Three-dimensional geometry and topology. Vol. 1. In: Levy, S. (ed.) Volume 35 of Princeton Mathematical Series. Princeton University Press, Princeton (1997)

    Google Scholar 

  37. Witten, E.: Supersymmetric index in four-dimensional gauge theories. Adv. Theor. Math. Phys. 5(5), 841–907 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Constantin Teleman and William Goldman for helpful correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Lawton.

Additional information

Indranil Biswas: author was supported by the J. C. Bose Fellowship. Sean Lawton: author was partially supported by the Simons Foundation, USA (No. 245642) and the National Science Foundation, USA (No. 1309376). Daniel Ramras: author was partially supported by the Simons Foundation, USA (No. 279007).

Appendix: Serre fibrations

Appendix: Serre fibrations

Recall that a map \(f: E\rightarrow B\) has the left lifting property with respect to a map \(i: W\rightarrow Z\) if every commutative diagram

admits a lift \(Z\rightarrow E\) making the diagram commute. The map f is a Serre fibration if it has the left lifting property with respect to the inclusions \([0,1]^{n-1}\times \{0\} \hookrightarrow [0,1]^n\) for all \(n\ge 1\). It is a well-known fact that Serre fibrations satisfy the left lifting property not just for the inclusions \([0,1]^{n-1}\times \{0\} \hookrightarrow [0,1]^n\), but also for all inclusions \(A\hookrightarrow B\) where B is a CW-complex, A is a subcomplex, and the inclusion is a homotopy equivalence (this is one part of a model category structure on topological spaces, as constructed in many places). We need only a very simple special case of this, namely the case of the inclusion \(\{\vec {0}\} \hookrightarrow [0,1]^n\), where \(\vec {0} = (0, \ldots , 0)\). This special case can be proved by a simple induction on n: the case \(n=1\) is already part of the definition of a Serre fibration, and assuming the result for \(n-1\), we factor the inclusion \(\{\vec {0}\} \hookrightarrow [0,1]^n\) through \([0,1]^{n-1}\times \{0\}\) and apply the left lifting property first to \(\{\vec {0}\} \hookrightarrow [0,1]^{n-1}\times \{0\}\), and then to \([0,1]^{n-1}\times \{0\} \hookrightarrow [0,1]^n\).

Proposition 3.1

Let \(X\mathop {\longrightarrow }\limits ^{f} Y\mathop {\longrightarrow }\limits ^{g} Z\) be maps between topological spaces, and assume f is surjective. If f and gf are Serre fibrations, then so is g.

Proof

Given a commutative diagram

we must produce a map \([0,1]^{n}\rightarrow Y\) making the diagram commute. Since f is surjective, we may choose a point \(x_0\in X\) such that \(f(x_0) = \widetilde{H}_0 (\vec {0})\), and since \(X\rightarrow Y\) has the left lifting property with respect to \(\{\vec {0}\}\hookrightarrow [0,1]^{n-1}\), there exists a map G making the diagram

commute (where \(c_{x_0} (\vec {0}) = x_0\)). Since gf is a Serre fibration and \(g\circ f \circ G = g\circ \widetilde{H}_0 = H\circ i\), there exists a commutative diagram

The desired lift \([0,1]^n \rightarrow Y\) of H is given by \(f\circ \widetilde{H}\). \(\square \)

Corollary 3.2

Let F be a finite group acting freely on Hausdorff spaces E and B, and let \(f: E\rightarrow B\) be an equivariant map that is also a Serre fibration. Then the induced map \(E/F\rightarrow B/F\) is a Serre fibration.

Proof

We will apply Proposition 3.1 to the composition

$$\begin{aligned} E \longrightarrow E/F \longrightarrow B/F. \end{aligned}$$

Quotient maps for free finite group actions on Hausdorff spaces are covering maps, and covering maps are Serre fibrations, so the first map in this sequence is a (surjective) Serre fibration. The composite map equals the composite map

$$\begin{aligned} E \longrightarrow B \longrightarrow B/F, \end{aligned}$$

which is a composition of Serre fibrations, hence a Serre fibration. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, I., Lawton, S. & Ramras, D. Fundamental groups of character varieties: surfaces and tori. Math. Z. 281, 415–425 (2015). https://doi.org/10.1007/s00209-015-1492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1492-x

Keywords

Mathematics Subject Classification

Navigation