Skip to main content
Log in

Salem numbers in dynamics on Kähler threefolds and complex tori

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(X\) be a compact Kähler manifold of dimension \(k\!\le \! 4\) and \(f{:}X\!\rightarrow \! X\) a pseudo-automorphism. If the first dynamical degree \(\lambda _1(f)\) is a Salem number, we show that either \(\lambda _1(f)=\lambda _{k-1}(f)\) or \(\lambda _1(f)^2=\lambda _{k-2}(f)\). In particular, if \({\dim }(X)=3\) then \(\lambda _1(f)=\lambda _2(f)\). We use this to show that if \(X\) is a complex 3-torus and \(f\) is an automorphism of \(X\) with \(\lambda _1(f)>1\), then \(f\) has a non-trivial equivariant holomorphic fibration if and only if \(\lambda _1(f)\) is a Salem number. If \(X\) is a complex 3-torus having an automorphism \(f\) with \(\lambda _1(f)=\lambda _2(f)>1\) but is not a Salem number, then the Picard number of \(X\) must be 0, 3 or 9, and all these cases can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedford, E., Kim, K.-H.: Pseudo-automorphisms without dimension-reducing factors. Manuscript, 2012. An extension of this is the next paper

  2. Bedford, E., Cantat, S., Kim, K.-H.: Pseudo-automorphisms with no invariant foliation, arXiv:1309.3695

  3. Bedford, E., Kim, K.-H.: Pseudo-automorphisms of 3-space: periodicities and positive entropy in linear fractional recurrences, arXiv:1101.1614

  4. Demailly, J.-P., Hwang, J.-M., Peternell, T.: Compact manifolds covered by a torus. J. Geom. Anal. 18, 324–340 (2008)

    Article  MATH  Google Scholar 

  5. Diller, J., Favre, C.: Dynamics of bimeromorphic maps of surfaces. Am. J. Math. 123(6), 1135–1169 (2001)

    Article  MATH  Google Scholar 

  6. Dinh, T.-C., Nguyen, V.-A.: Comparison of dynamical degrees for semi-conjugate meromorphic maps. Comment. Math. Helv. 86(4), 817–840 (2011)

    Article  MATH  Google Scholar 

  7. Dinh, T.-C., Nguyen, V.-A., Truong, T.T.: On the dynamical degrees of meromorphic maps preserving a fibration. Commun. Contemp. Math. 14, 1250042 (2012)

    Article  Google Scholar 

  8. Dinh, T.-C., Sibony, N.: Une borne supérieure de l’entropie topologique d’une application rationnelle. Ann. Math. 161, 1637–1644 (2005)

    Article  MATH  Google Scholar 

  9. Dinh, T.-C., Sibony, N.: Regularization of currents and entropy. Ann. Sci. Ecole Norm. Sup. (4) 37(6), 959–971 (2004)

    MATH  Google Scholar 

  10. Dolgachev, I., Ortland D.: Point sets in projective spaces and theta functions. Astérisque, 165 (1988)

  11. Fornaess, J.E., Sibony, N., Complex dynamics in higher dimensions. Notes partially written by Estela A. Gavosto. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 459, Complex potential theory (Montreal, PQ, 1993), 131–186. Kluwer Acad. Publ., Dordrecht (1994)

  12. Gille, P., Szamuelly, T.: Central Simple Algebras and Galois Cohomology, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  13. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  14. Gromov, M.: On the entropy of holomorphic maps. Enseign. Math. (2), 49(3–4), 217–235. Manuscript (1997)

  15. Gross, B., McMullen, C.: Automorphisms of even unimodular lattices and unramified Salem numbers. J. Algebra 257(2), 269–290 (2002)

    Article  Google Scholar 

  16. Hagedorn, T.: General formulas for solvable sextic equations. J. Algebra 233, 704–757 (2000)

    Article  MATH  Google Scholar 

  17. Nakayama, N., Zhang, D.-Q.: Building blocks of tale endomorphisms of complex projective manifolds. Proc. Lond. Math. Soc. (3) 99(3), 725–756 (2009)

    Google Scholar 

  18. Reschke, P.: Salem numbers and automorphisms of complex surfaces. Math Research Letters (to appear). arXiv:1202.5245

  19. Sibony, N.: Dynamique des applications de \(\mathbb{P}^k\). In Dynamique et Ge’ome’trie Complexes, Lyon 1997. Panor. Synthese, vol. 8, pp. 97–185. Soc. Math. France, Paris (1999)

  20. Truong, T.T.: The simplicity of the first spectral radius of a meromorphic map. Mich. Math. J., accepted arXiv:1212.1019

  21. Voisin, C.: On the homotopy types of compact Kähler and complex projective manifolds. Inventiones Math. 157(2), 329–343 (2004)

    Article  MATH  Google Scholar 

  22. Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. Lecture Notes in Mathematics. In A. Dold and B. Eckman (eds.) Vol. 439, Springer, Berlin-Heidelberg-New York (1975)

  23. Yomdin, Y.: Volume growth and entropy. Israel J. Math. 57(3), 285–300 (1987)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Eric Bedford for his kindly sending us the preprint [1], which was extended to the preprint [2] after a draft of our paper had been sent to him, and for his interest in the topic of the paper. Theorems 3 and 4 are in response to some of his questions. We also would like to thank Paul Reschke for his interest in the paper, and to him and the referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuyen Trung Truong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oguiso, K., Truong, T.T. Salem numbers in dynamics on Kähler threefolds and complex tori. Math. Z. 278, 93–117 (2014). https://doi.org/10.1007/s00209-014-1307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1307-5

Keywords

Mathematics Subject Classification (2000)

Navigation