Skip to main content
Log in

A mirror construction for the big equivariant quantum cohomology of toric manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We identify a certain universal Landau–Ginzburg model as a mirror of the big equivariant quantum cohomology of a (not necessarily compact or semipositive) toric manifold. The mirror map and the primitive form are constructed via Seidel elements and shift operators for equivariant quantum cohomology. Primitive forms in non-equivariant theory are identified up to automorphisms of the mirror.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Small means that the parameter \(\tau \) is restricted to lie in \(H^2\); big means that the parameter space is the whole cohomology group.

  2. This is equivalent to \(X_\Sigma \) being a GIT quotient of a vector space. We do not assume that \(X_\Sigma \) is projective or \(c_1(X_\Sigma )\) is semipositive.

  3. Recall the convention on the T-action on \(H^0(X_\Sigma ,\mathcal {O})\) at the beginning of Sect. 2.3.

References

  1. Adolphson, A.: Hypergeometric functions and rings generated by monomials. Duke Math. J. 73(2), 269–290 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barannikov, S.: Semi-infinite Hodge structure and mirror symmetry for projective spaces (2001). arXiv:math.AG/0010157

  4. Borisov, L.A., Horja, R.P.: On the better behaved version of the GKZ hypergeometric system. Math. Ann. 357(2), 585–603 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braverman, A., Maulik, D.: Quantum cohomology of the Springer resolution. Adv. Math. 227(1), 421–458 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, K., Lau, S.-C., Leung, N.-C., Tseng, H.-H.: Open Gromov-Witten invariants, mirror maps, and Seidel representations for toric manifolds (2012). arXiv:1209.6119

  7. Cheong, D., Ciocan-Fontanine, I., Kim, B.: Orbifold quasimap theory. Math. Ann. 363(3–4), 777–816 (2015). arXiv:1405.7160 [math.AG]

  8. Chiang, T.-M., Klemm, A., Yau, S.-T., Zaslow, E.: Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3(3), 495–565 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cho, C.-H., Oh, Y.-G.: Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. Asian J. Math. 10(4), 773–814 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciocan-Fontanine, I., Kim, B.: Wall-crossing in genus-zero quasimap theory and mirror maps. Algebraic Geom. 1(4), 400–448 (2014). arXiv:1304.7506

    Article  MathSciNet  MATH  Google Scholar 

  11. Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: Computing genus-zero twisted Gromov-Witten invariants. Duke Math. J. 147(3), 377–438 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: A mirror theorem for toric stacks. Compos. Math. 151(10), 1878–1912 (2015). arXiv:1310.4163 [math.AG]

  13. Coates, T., Corti, A., Lee, Y.-P., Tseng, H.-H.: The quantum orbifold cohomology of weighted projective spaces. Acta Math. 202(2), 139–193 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coates, T., Givental, A.: Quantum Riemann-Roch, Lefschetz and Serre. Ann. Math. (2) 165(1), 15–53 (2007)

  15. Cox, D.A., Little, John B., Schenck, H.K.: Toric varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

  16. Douai, A., Mann, E.: The small quantum cohomology of a weighted projective space, a mirror \(D\)-module and their classical limits. Geom. Dedicata 164, 187–226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Douai, A., Sabbah, C.: Gauss-Manin systems, Brieskorn lattices and Frobenius structures. II. In: Frobenius manifolds, Aspects Math., vol. E36, pp. 1–18. Vieweg, Wiesbaden (2004)

  18. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds. I. Duke Math. J. 151(1), 23–174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds II: bulk deformations. Selecta Math. (N.S.) 17(3), 609–711 (2011)

  20. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory and mirror symmetry on compact toric manifolds. Astérisque (376), vi+340 (2016). arXiv:1009.1648

  21. Givental, A.: Elliptic Gromov-Witten invariants and the generalized mirror conjecture. In: Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), pp. 107–155. World Sci. Publ., River Edge (1998)

  22. Givental, A.: A mirror theorem for toric complete intersections. In: Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., vol. 160, pp. 141–175. Birkhäuser, Boston (1998)

  23. Givental, A.: Symplectic geometry of Frobenius structures. In: Frobenius manifolds, Aspects Math., vol. E36, pp. 91–112. Friedr. Vieweg, Wiesbaden (2004)

  24. Givental, A.B.: Homological geometry and mirror symmetry. In: Proceedings of the international congress of mathematicians, vol. 1, 2 (Zürich, 1994), pp. 472–480. Birkhäuser, Basel (1995)

  25. González, E., Iritani, H.: Seidel elements and mirror transformations. Selecta Math. (N.S.) 18(3), 557–590 (2012)

  26. González, E., Iritani, H.: Seidel elements and potential functions for holomorphic disc counting. (2013). arXiv:1301.5454

  27. González, E., Woodward, C.: Quantum cohomology and toric minimal model programs. (2012). arXiv:1010.2118

  28. Graber, T., Pandharipande, R.: Localization of virtual classes. Invent. Math. 135(2), 487–518 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gross, M.: Mirror symmetry for \(P^2\) and tropical geometry. Adv. Math. 224(1), 169–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grothendieck, A.: Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math. (4), 228 (1960)

  31. Guest, M., Sakai, H.: Orbifold quantum D-modules associated to weighted projective spaces. Comment. Math. Helv. 89(2), 273–297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hazewinkel, M.: Formal groups and applications, Pure and Applied Mathematics, vol. 78. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1978)

  33. Hori, K., Vafa, C.: Mirror symmetry. (2000). arXiv:hep-th/0002222

  34. Ilyashenko, Y., Yakovenko, S.: Lectures on analytic differential equations. Graduate Studies in Mathematics, vol. 86. American Mathematical Society, Providence (2008)

  35. Iritani, H.: Convergence of quantum cohomology by quantum Lefschetz. J. Reine Angew. Math. 610, 29–69 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Iritani, H.: Quantum \(D\)-modules and generalized mirror transformations. Topology 47(4), 225–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Iritani, H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222(3), 1016–1079 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Iritani, H.: Shift operators and toric mirror theorem. Geom. Topol. (to appear) (2014). arXiv:1411.6840 [math.AG]. http://msp.org/scripts/coming.php?jpath=gt

  39. Konishi, Y., Minabe, S.: Local B-model and mixed Hodge structure. Adv. Theor. Math. Phys. 14(4), 1089–1145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, C., Li, S., Saito, K.: Primitive forms via polyvector fields. (2013). arXiv:1311.1659

  41. Lian, B.H., Liu, K., Yau, S.-T.: Mirror principle. I. Asian J. Math. 1(4), 729–763 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology. (2012). arXiv:1211.1287 [math.AG]

  43. McDuff, D., Tolman, S.: Topological properties of Hamiltonian circle actions. IMRP. Int. Math. Res. Pap. 72826, 1–77 (2006)

    MathSciNet  MATH  Google Scholar 

  44. McQuillan, M.: Formal formal schemes. In: Topology and geometry: commemorating SISTAG, Contemp. Math., vol. 314, pp. 187–198. Amer. Math. Soc., Providence (2002)

  45. Mochizuki, T.: Twistor property of GKZ-hypergeometric systems. (2015). arXiv:1501.04146

  46. Oda, T.: Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15. Springer-Verlag, Berlin (1988, An introduction to the theory of toric varieties, Translated from the Japanese)

  47. Okounkov, A., Pandharipande, R.: The quantum differential equation of the Hilbert scheme of points in the plane. Transform. Groups 15(4), 965–982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ostrover, Y., Tyomkin, I.: On the quantum homology algebra of toric Fano manifolds. Selecta Math. (N.S.) 15(1), 121–149 (2009)

  49. Pandharipande, R.: Rational curves on hypersurfaces (after A. Givental). Astérisque (252):Exp. No. 848, 5, pp. 307–340 (1998, Séminaire Bourbaki. Vol. 1997/98)

  50. Reichelt, T., Sevenheck, C.: Non-affine Landau-Ginzburg models and intersection cohomology (2012). arXiv:1210.6527 [math.AG]

  51. Reichelt, T., Sevenheck, C.: Logarithmic Frobenius manifolds, hypergeometric systems and quantum \(D\)-modules. J. Algebraic Geom. 24(2), 201–281 (2015). arXiv:1010.2118

    Article  MathSciNet  MATH  Google Scholar 

  52. Sabbah, C.: Hypergeometric period for a tame polynomial. C. R. Acad. Sci. Paris Sér. I Math. 328(7), 603–608 (1999, A longer version published in: Port. Math. (N.S.) 63(2), 173–226 (2006))

  53. Saito, K.: The higher residue pairings \(K_{F}^{(k)}\) for a family of hypersurface singular points. 40, 441–463 (1983)

  54. Saito, K.: Period mapping associated to a primitive form. Publ. Res. Inst. Math. Sci. 19(3), 1231–1264 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  55. Morihiko S.: On the structure of Brieskorn lattices, II (2013). arXiv:1312.6629

  56. Seidel, P.: \(\pi _1\) of symplectic automorphism groups and invertibles in quantum homology rings. Geom. Funct. Anal. 7(6), 1046–1095 (1997). arXiv:dg-ga/9511011

  57. Teleman, C.: Mirror symmetry and gauge theory. (2014). arXiv:1404.6305

  58. Woodward, C.T.: Quantum Kirwan morphism and Gromov-Witten invariants of quotients I, II, III. Transform. Groups 20(2,3,4), 507–556, 881–920, 1155–1193 (2015). arXiv:1204.1765

  59. Yasuda, T.: Non-adic formal schemes. Int. Math. Res. Not. IMRN 13, 2417–2475 (2009)

    MathSciNet  MATH  Google Scholar 

  60. You, F.: Seidel elements and mirror transformations for toric stacks. Mich. Math. J. 65(1), 199–224 (2016). arXiv:1411.7732

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I thank Eduardo González and Si Li for very helpful discussions. Joint work [25] with Eduardo González was a starting point of the present research. Si Li suggested me to consider deformations of F(x) by infinitely many monomials. This research is supported by JSPS Kakenhi Grant Numbers 16K05127, 16H06337, 25400069, 26610008, 23224002, 25400104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Iritani.

Additional information

Communicated by Denis Auroux.

Appendix 1: Formal geometry in infinite dimensions

Appendix 1: Formal geometry in infinite dimensions

For the sake of completeness, we prove a formal inverse function theorem and the existence of a flow of a vector field in infinite dimensions. The results here are straightforward generalizations of well-known results in finite dimensions, but we could not find a reference. Throughout the section, we assume that R is a linearly topologized ring containing \(\mathbb {Q}\) and that R is complete and Hausdorff. We denote by \(\{R_\nu \}\) a fundamental neighbourhood system of zero consisting of ideals of R.

Let \(\mathbf {x}= \{x_1,x_2,x_3,\ldots \}\) be a countably infinite set of variables. A morphism \(f :{\text {Spf}}(R[\![\mathbf {x}]\!]) \rightarrow {\text {Spf}}(R[\![\mathbf {x}]\!])\) of formal schemes over R (see Sect. 2.1 for \(R[\![\mathbf {x}]\!]\)) is given by a tuple \(\{f^*(x_1),f^*(x_2), f^*(x_3),\ldots \}\) of elements in \(R[\![\mathbf {x}]\!]\) such that \(f^*(x_i)|_{\mathbf {x}=0}\in R_\mathrm{nilp}\) and \(\lim _{n\rightarrow \infty } f^*(x_n) =0\), where \(R_\mathrm{nilp}= \{x \in R : \lim _{n\rightarrow \infty } x^n = 0\}\). Consider the R-module

$$\begin{aligned} T := \left\{ (r_n)_{n=1}^\infty \in R^{\mathbb {N}} : \lim _{n\rightarrow \infty } r_n = 0 \right\} \cong (\mathbb {Q}^{\oplus \mathbb {N}})\mathbin {\widehat{\otimes }}R. \end{aligned}$$

The topology on T is defined by submodules \((\mathbb {Q}^{\oplus \mathbb {N}})\mathbin {\widehat{\otimes }}R_\nu \). A morphism f associates the (continuous) tangent map \(df :T \rightarrow T\) defined by \(df (e_i) = \sum _{j=1}^\infty \left. \frac{\partial f^*(x_j)}{\partial x_i}\right| _{\mathbf {x}=0} e_j\). The following gives two important classes of morphisms.

  • for a continuous R-module homomorphism \(A :T \rightarrow T\) with \(A(e_i) = \sum _{j=1}^\infty a_{ji} e_j\), we have a linear map f given by \(f^*(x_j) = \sum _{j=1}^\infty a_{ji} x_i\);

  • for an element \((r_j)_{j=1}^\infty \in T\) with \(r_j \in R_\mathrm{nilp}\), we have a translation map f given by \(f^*(x_j) = x_j + r_j\).

Theorem 6.1

(formal inverse function theorem) Let \(f :{\text {Spf}}(R[\![\mathbf {x}]\!]) \rightarrow {\text {Spf}}(R[\![\mathbf {x}]\!])\) be a morphism of formal schemes over R. If the tangent map \(df :T \rightarrow T\) at \(\mathbf {x}=0\) is an isomorphism, f is an isomorphism.

Proof

By composing with a linear map and a translation, we may assume that \(f(0) = 0\) and the tangent map df is the identity. Then the truncation of \(f^*\) given by \(R[\![x_1,\ldots ,x_n]\!] \subset R[\![\mathbf {x}]\!] \xrightarrow {f^*} R[\![\mathbf {x}]\!] \twoheadrightarrow R[\![x_1,\ldots ,x_n]\!]\) is an isomorphism, by the inverse function theorem in finite dimensions (see [32, Appendix A]; the proof over a discrete ring works verbatim over R). It follows easily that \(f^*\) is an isomorphism. \(\square \)

Next we discuss the integrability of a formal vector field. A formal vector field on \({\text {Spf}}(R[\![\mathbf {x}]\!])\) over R is a formal sum \(V= \sum _{n=1}^\infty V_n(\mathbf {x}) \frac{\partial }{\partial x_n}\) with \(V_n(\mathbf {x}) \in R[\![\mathbf {x}]\!]\) such that \(\lim _{n \rightarrow \infty } V_n(\mathbf {x}) = 0\). We consider the flow \(t\mapsto \mathbf {x}(t)=(x_n(t))_{n=1}^\infty \) satisfying

$$\begin{aligned} \frac{dx_n(t)}{dt} = V_n(\mathbf {x}(t)) \quad \text {with}\quad x_n(0) = x_n. \end{aligned}$$
(5.3)

Theorem 6.2

There exists a unique solution \(\mathbf {x}(t) = (x_n(t))_{n=1}^\infty \) to the Eq. (5.3) which defines a morphism \({\text {Spf}}(R[\![\mathbf {x}]\!][\![t]\!]) \rightarrow {\text {Spf}}(R[\![\mathbf {x}]\!])\) of formal schemes. Let \(I\subset R\) be an ideal such that, for any \(\nu \), there exists \(n\in \mathbb {N}\) such that \(I^n \subset R_\nu \). If \(V_n(\mathbf {x})\in I[\![\mathbf {x}]\!]\) for all n, then the substitution \(t=1\) in the solution \(\mathbf {x}(t)\) is well-defined and we obtain a time-one flow map \({\text {Spf}}(R[\![\mathbf {x}]\!]) \rightarrow {\text {Spf}}(R[\![\mathbf {x}]\!])\).

Proof

Note that V defines a well-defined continuous mapping \(V :R[\![\mathbf {x}]\!] \rightarrow R[\![\mathbf {x}]\!]\). The flow is given by a continuous ring homomorphism \(R[\![\mathbf {x}]\!] \rightarrow R[\![\mathbf {x}]\!][\![t]\!]\) defined by \(\varphi \mapsto \exp (t V) \varphi = \sum _{k=0}^\infty \frac{1}{k!} t^k V^k(\varphi )\), where \(V^k\) is the k-fold composition of V, see [34, Section 3C]. The former statement follows. To see the latter, it suffices to notice that \(\lim _{k\rightarrow \infty } V^k(\varphi ) = 0\) uniformly for all \(\varphi \in R[\![\mathbf {x}]\!]\) under the assumption. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iritani, H. A mirror construction for the big equivariant quantum cohomology of toric manifolds. Math. Ann. 368, 279–316 (2017). https://doi.org/10.1007/s00208-016-1437-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1437-7

Mathematics Subject Classification

Navigation