Skip to main content
Log in

Smooth approximation of plurisubharmonic functions on almost complex manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This note establishes smooth approximation from above for J-plurisubharmonic functions on an almost complex manifold (XJ). The following theorem is proved. Suppose X is J-pseudoconvex, i.e., X admits a smooth strictly J-plurisubharmonic exhaustion function. Let u be an (upper semi-continuous) J-plurisubharmonic function on X. Then there exists a sequence \(u_j \in C^\infty (X)\) of smooth strictly J-plurisubharmonic functions point-wise decreasing down to u. In any almost complex manifold (XJ) each point has a fundamental neighborhood system of J-pseudoconvex domains, and so the theorem above establishes local smooth approximation on X. This result was proved in complex dimension 2 by the third author, who also showed that the result would hold in general dimensions if a parallel result for continuous approximation were known. This paper establishes the required step by solving the obstacle problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See “Appendix 1” for a discussion of jet-equivalence.

  2. It is also shown at the end of section 7 in [12] that the various notions of F(J)-harmonic (including the notion of being maximal and continuous) are equivalent.

References

  1. Błocki, Z.: Weak solutions to the complex Hessian equation. Annal. Inst. Fourier 55, 1735–1756 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Crandall, M.G.: Viscosity solutions: a primer. In: Dolcetta, Lions, (eds.) Viscosity Solutions and Applications, SLNM 1660, pp. 1–43. Springer Press, New York (1997)

    Chapter  Google Scholar 

  3. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N. S.) 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diederich, K., Sukhov, A.: Plurisubharmonic exhaustion functions and almost complex Stein structures. Mich. Math. J. 56(2), 331–355 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dinew, S., Kołodziej, S.: A priori estimates for complex Hessian equations. Anal. PDE 7(1), 227–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fornæss, J.E.: Plurisubharmonic functions on smooth domains. Math. Scand. 53(1), 33–38 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fornæss, J.E., Wiegerinck, J.: Approximation of plurisubharmonic functions. Ark. Math. 27(2), 257–272 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harvey, F.R., Lawson H.B. Jr.: Dirichlet duality and the non-linear Dirichlet problem. Commun. Pure Appl. Math. 62, 396–443 (2009). arXiv:0710.3991

  9. Harvey, F.R., Lawson Jr, H.B.: Plurisubharmonicity in a general geometric context. Geom. Anal. 1, 363–401 (2010). arXiv:0804.1316

    MathSciNet  MATH  Google Scholar 

  10. Harvey, F.R., Lawson Jr, H.B.: Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds. J. Differ. Geom. 88, 395–482 (2011). arXiv:0912.5220

    MathSciNet  MATH  Google Scholar 

  11. Harvey, F.R., Lawson Jr, H.B.: Geometric plurisubharmonicity and convexity—an introduction. Adv. Math. 230, 2428–2456 (2012). arXiv:1111.3875

    Article  MathSciNet  MATH  Google Scholar 

  12. Harvey, F.R., Lawson Jr, H.B.: Potential theory on almost complex manifolds. Ann. Inst. Fourier 65(1), 171–210 (2015). arXiv:1107.2584

    Article  MathSciNet  MATH  Google Scholar 

  13. Harvey, F.R., Lawson, H.B., Jr.: Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry. In: Cao, H.-D., Yau, S.-T. (eds.) Surveys in Differential Geometry, vol. 18, pp. 102–156. International Press, Somerville, MA (2013). arXiv:1303.1117

  14. Lu, H.C.: Solutions to degenerate complex Hessian equations. J. Math. Pures Appl. 100(6), 785–805 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lu, H.C., Nguyen, V.-D.: Degenerate complex Hessian equations on compact Kähler manifolds. Indiana Univ. Math. J. 64(6), 1721–1745 (2015). arXiv:1402.5147

    Article  MathSciNet  MATH  Google Scholar 

  16. Pali, N.: Fonctions plurisousharmoniques et courants positifs de type \((1, 1)\) sur une variété presque complexe. Manuscr. Math. 118(3), 311–337 (2005)

    Article  MathSciNet  Google Scholar 

  17. Pliś, S.: The Monge-Ampère equation on almost complex manifolds. Math. Z. 276(3–4), 969–983 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Pliś, S.: Monge-Ampère operator on four dimensional almost complex manifolds. J. Goem. Anal. (2015). doi:10.1007/s12220-015-9635-1

    Google Scholar 

  19. Pliś, S.: On regularization of J-plurisubharmonic functions. C.R. Acad. Sci. Paris, Ser.I. 353(1), 17–19 (2015). doi:10.1016/j.crma.2014.11.001

  20. Pliś, S.: The smoothing of \(m\)-subharmonic functions (2013). arXiv:1312.1906

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Blaine Lawson Jr..

Additional information

The author H. Blaine Lawson was partially supported by the NSF and IHES, and the author Szymon Pliś was partially supported by the NCN grants 2011/01/D/ST1/04192 and 2013/08/A/ST1/00312.

Appendices

Appendix 1: Affine jet-equivalence

A local affine jet-equivalence is a local isomorphism of the (canonically trivialized) 2-jet bundle \(\mathbf{J}({\mathbb R}^n) = {\mathbb R}\times {\mathbb R}^n\times {\mathrm{Sym}^2({\mathbb R}^n)}\) which is of the form:

$$\begin{aligned} r' = r+r_0(x), \quad p'=k(x)p + p_0(x),\quad A'= h(x) A h(x)^t + L_x(p) +A_0(x) \end{aligned}$$

where

$$\begin{aligned}&r_0(x) \ \text {takes values in}\quad {\mathbb R}, \\&p_0(x) \ \text {takes values in}\quad {\mathbb R}^n, \\&A_0(x) \ \text {takes values in}\quad {\mathrm{Sym}^2({\mathbb R}^n)}, \\&\text {(i.e.,}\quad J_0(x) \equiv (r_0(x), p_0(x), A_0(x)) \mathrm{\quad is\,a\, section\,of} \mathbf{J}({\mathbb R}^n)) \end{aligned}$$

and

$$\begin{aligned}&k(x)\,\mathrm{and}\,h(x) \mathrm{\quad take\,values\,in}\,\mathrm{GL}_n({\mathbb R}), \mathrm{while} \\&L_x\,\mathrm{takes\,values\,in}\,\mathrm{Hom\,}({\mathbb R}^n, {\mathrm{Sym}^2({\mathbb R}^n)})\\ \end{aligned}$$

The regularity conditions on the jet-equivalence required in the proof of Theorem 10.1 in [10] are:

  1. (1)

    kh and L are Lipschitz continuous, and

  2. (2)

    \(J_0\) is continuous.

For the second jet equivalence in our application to the Obstacle Problem, \(g\equiv h \equiv Id\) and \(J_0(x) = (r_0(x),0,0)\), so our obstacle function \(g(x) = -r_0(x)\) need only be continuous.

Appendix 2: \(\Sigma _m\)-Subharmonic functions

As noted in Remark 1.3, for any subequation F, smooth approximation for F-subharmonic functions can be proved whenever continuous approximation and a Richberg-type theorem can be established for F. In this appendix we give just such a result for the complex hessian subequations on a Kähler manifold.

Let X be a complex manifold of dimension n with a fixed Kähler form \(\omega \). We say that a function \(u\in \mathcal {C}^2(\Omega )\) is \(\Sigma _m\)-subharmonic on a domain \(\Omega \subset \subset X\) if \((dd^cu)^k\wedge \omega ^{n-k}\ge 0\) for \(k=1,\ldots ,m\). We say that a upper semi-continuous function

$$\begin{aligned} u:\Omega \rightarrow [-\infty ,+\infty ) \end{aligned}$$

is \(\Sigma _m\)-subharmonic (\(u\in {\Sigma }_m(\Omega )\)) if u is locally integrable and

$$\begin{aligned} dd^cu\wedge dd^cu_1\wedge \cdots \wedge dd^cu_{m-1}\wedge \omega ^{n-m}\ge 0, \end{aligned}$$

for any \(\mathcal {C}^2\) \(\Sigma _m\)-subharmonic functions \(u_1,\ldots u_{m-1}\) (they are defined in [1] for \(\omega =\omega _{st}=dd^c(|z|^2)\) in \(\mathbb {C}^n\) and in [5, 14] for general Kähler form). It is non-trivial that this distributional definition coincides with the viscosity definition (see [12, App. A] and forward references). This is just the subequation \(F\equiv \Sigma _m\) defined on X by the condition that the first m elementary symmetric functions of the complex hessian satisfy \(\sigma _\ell (\mathrm{Hess}_{\mathbb C}u) \ge 0\) for \(\ell =1,\ldots ,m\) (compare Example 18.1 in [10] and Lemma 7 in [20]).

A Richberg-type theorem for \({\Sigma }_m\) was proved in [20] (Theorem 2). Lu and Nguyen proved in [15] that on compact Kähler manifolds any quasi-\(\Sigma _m\)-subharmonic function can be approximated from above by smooth quasi-\(\Sigma _m\)-subharmonic functions (a function u is quasi-\(\Sigma _m\)-subharmonic if the function \(u+\rho \) is \(\Sigma _m\)-subharmonic where \(\rho \) is local potential for \(\omega \)). Actually their global result implies that locally it is possible to regularize \(\Sigma _m\)-subharmonic functions. However, in the same way as in Theorem 4.1, we can prove a slightly stronger result.

Theorem 6.1

Let X be a \(\Sigma _m\) -pseudoconvex Kähler manifold. Let u be a \(\Sigma _m\) -subharmonic function on X. Then there exists a decreasing sequence \(u_j \in \mathcal {C}^\infty (X)\) of \(\Sigma _m\) -subharmonic functions such that \(u_j\downarrow u\).

By \(\Sigma _m\) -pseudoconvex we mean that X has a global \(\mathcal {C}^2\) strictly \(\Sigma _m\)-subharmonic exhaustion function. In particular Stein manifolds are \(\Sigma _m\)-pseudoconvex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, F.R., Lawson, H.B. & Pliś, S. Smooth approximation of plurisubharmonic functions on almost complex manifolds. Math. Ann. 366, 929–940 (2016). https://doi.org/10.1007/s00208-015-1348-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1348-z

Keywords

Navigation