Skip to main content
Log in

Decorated marked surfaces: spherical twists versus braid twists

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We are interested in the 3-Calabi-Yau categories \({\mathcal {D}}\) arising from quivers with potential associated to a triangulated marked surface \(\mathbf {S}\) (without punctures). We prove that the spherical twist group \(\mathrm{ST}\) of \({\mathcal {D}}\) is isomorphic to a subgroup (generated by braid twists) of the mapping class group of the decorated marked surface \({\mathbf {S}}_\bigtriangleup \). Here \({\mathbf {S}}_\bigtriangleup \) is the surface obtained from \(\mathbf {S}\) by decorating with a set of points, where the number of points equals the number of triangles in any triangulations of \(\mathbf {S}\). For instance, when \(\mathbf {S}\) is an annulus, the result implies that the corresponding spaces of stability conditions on \({\mathcal {D}}\) are contractible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Brav, C., Thomas, H.: Braid groups and Kleinian singularities. Math. Ann. 351, 1005–1017 (2011). arXiv:0910.2521

    Article  MathSciNet  MATH  Google Scholar 

  2. Bridgeland, T., Smith, I.: Quadratic differentials as stability conditions. Publ. Math. de l’IHÉS 121, 155–278 (2015). arXiv:1302.7030

    Article  MathSciNet  MATH  Google Scholar 

  3. Brüstle, T., Qiu, Y.: Auslander-Reiten translation on marked surfaces. Mathematische Zeitschrift 279, 1103–1120 (2015). arXiv:1212.0007

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen, F., Pakianathan, J.: Configuration spaces and braid groups, avaliable online

  5. Kent IV, R.P., Peifer, D.: A geometric and algebraic description of annular braid groups. Int. J. Algebra Comput. 12, 85–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farb, B., Margalit, D.: A primer on mapping class groups Princeton University Press 2011

  7. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces, part I: Cluster complexes. Acta Math. 201, 83–146 (2008). arXiv:math/0608367

    Article  MathSciNet  MATH  Google Scholar 

  8. Gaiotto, D., Moore, G., Neitzke, A.: Wall-crossing, Hitchin systems and the WKB approximation. Adv. Math. 234, 239–403 (2013). arXiv:0907.3987

    Article  MathSciNet  MATH  Google Scholar 

  9. Geiss, C., Labardini-Fragoso, D., Schröer, J.: The representation type of Jacobian algebras. arXiv:1308.0478

  10. Ishii, A., Ueda, K., Uehara, H.: Stability conditions on \(A_n\)-singularities. J. Diff. Geom 84, 87–126 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Keller, B., Van den Bergh, M.: Deformed Calabi-Yau completions. J. reine angew. Math. 654, 125–180 (2011). arXiv:0908.3499

    MathSciNet  MATH  Google Scholar 

  12. Keller, B., Nicolás, P.: Weight structures and simple dg modules for positive dg algebras. Int. Math. Res. Not. 1028–1078 (2013). arXiv:1009.5904

  13. Keller, B., Yang, D.: Derived equivalences from mutations of quivers with potential. Adv. Math. 226, 2118–2168 (2011). arXiv:0906.0761

    Article  MathSciNet  MATH  Google Scholar 

  14. King, A., Qiu, Y.: Exchange graphs and Ext quivers. Adv. Math. 285, 1106–1154 (2015). arXiv:1109.2924v2

    Article  MathSciNet  MATH  Google Scholar 

  15. King, A., Qiu, Y.: Twisted surface, cluster of curves and quadratic differentials in preparation

  16. Krammer, D.: A class of Garside groupoid structures on the pure braid group. Trans. Amer. Math. Soc. 360, 4029–4061 (2008). arXiv:math/0509165

    Article  MathSciNet  MATH  Google Scholar 

  17. Khovanov, M., Seidel, P.: Quivers, floer cohomology and braid group actions. J. Amer. Math. Soc. 15, 203–271 (2002). arXiv:math/0006056

    Article  MathSciNet  MATH  Google Scholar 

  18. Qiu, Y.: Stability conditions and quantum dilogarithm identities for Dynkin quivers. Adv. Math. 269, 220–264 (2015). arXiv:1111.1010

    Article  MathSciNet  MATH  Google Scholar 

  19. Qiu, Y.: C-sortable words as green mutation sequences. Proc. Lond. Math. Soc. 111(2015), 1052–1070

  20. Qiu, Y., Zhou, Y.: Cluster categories for marked surfaces: punctured case. arXiv:1311.0010

  21. Qiu, Y., Zhou, Y.: Decorated marked surfaces II: Intersection numbers and dimensions of Homs. arXiv:1411.4003

  22. Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108, 37–108 (2001). arXiv:math/0001043

    Article  MathSciNet  MATH  Google Scholar 

  23. Smith, I.: Quiver algebra and Fukaya categories. arXiv:1309.0452

Download references

Acknowledgments

This work was inspired during joint working with Alastair King on the twin paper [15], which deals with punctured marked surfaces. I would like to thank my collaborators mentioned above, as well as Tom Bridgeland, Ivan Smith, Dong Yang, Idun Reiten and Bernhard Keller for inspiring conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y. Decorated marked surfaces: spherical twists versus braid twists. Math. Ann. 365, 595–633 (2016). https://doi.org/10.1007/s00208-015-1339-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1339-0

Navigation