Skip to main content
Log in

Development of a novel allele-specific Rfo marker and creation of Ogura CMS fertility-restored interspecific hybrids in Brassica oleracea

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel allele-specific Rfo marker was developed and proved to be effective for MAS of Rfo gene in B. oleracea background and six Ogu-CMS fertility-restored interspecific hybrids were created for the first time.

Abstract

Ogura cytoplasmic male sterility (Ogu-CMS) has been extensively used for Brassica oleracea hybrid production. However, because of maternal inheritance, all the hybrids produced by CMS lines are male sterile and cannot be self-pollinated, which prohibits germplasm maintenance and innovation. This problem can be overcome by using the Ogu-CMS restorer line, but restorer material is absent in B. oleracea crops. Here, Rfo, a fertility-restored gene of Ogu-CMS, was transferred from rapeseed restorer lines into a Chinese kale Ogu-CMS line using interspecific hybridization combined with embryo rescue. Nine interspecific, triploid plant progenies were identified at morphological and ploidy level, with phenotypes intermediate between those of rapeseed and Chinese kale. Because the Rfo marker (Hu et al., Mol Breeding 22:663–674, 2008) cannot distinguish the Rfo and its homologies under a B. oleracea background, a novel allele-specific Rfo marker was developed based on the BLAST analysis of highly homologous Rfo sequences in B. oleracea. Screening using the novel Rfo marker found that six interspecific hybrids carrying Rfo were also fertile, although fertility varied during different flowering periods. Furthermore, BC1 offsprings with the Rfo gene were selected with the allele-specific Rfo marker and showed restored fertility. These results indicated that the novel allele-specific marker could be used for the MAS of Rfo gene in B. oleracea, and this study lays the foundation for the development of Ogu-CMS restorer material in cabbage and its related other subspecies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayotte R, Harney PM, Machado VS (1987) The transfer of triazine resistance from Brassica napus L. to B. oleracea L. I. Production of F1 hybrids through embryo rescue. Euphytica 36(2):615–624

    Article  Google Scholar 

  • Bannerrot H, Boulidard L, Couderon Y, Temple J (1974) Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. In: Wills AB, North C (eds) Proc Eucarpia Meet Cruciferae. Scottish Hortic Res Inst, Invergavrie, pp 52–54

    Google Scholar 

  • Bonhomme S, Budar F, Ferault M, Pelletier G (1991) A 2.5 kb NcoI fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in Brassica cybrids. Curr Genet 19:121–127

    Article  CAS  Google Scholar 

  • Bonhomme S, Budar F, Lancelin D, Small I, Defrance MC, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol Gen Genet 235:340–348

    Article  CAS  PubMed  Google Scholar 

  • Bridgen MP (1994) A review of plant embryo culture. HortScience 29:1243–1246

    Google Scholar 

  • Brown GG (1999) Unique aspects of cytoplasmic male sterility and fertility restoration in Brassica napus. J Hered 90:351–356

    Article  CAS  Google Scholar 

  • Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P et al (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  CAS  PubMed  Google Scholar 

  • Budar F, Delourme R, Pelletier G (2004) Male sterility. In EC Pua, Douglas (eds) Biotechnology in agriculture and forestry 54. Springer, Berlin Heidelberg New York, pp 43–64

  • Chalhoub B, Denoeud F, Liu SY et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950

    Article  CAS  PubMed  Google Scholar 

  • Chen HG (2006) Studies on fertility and crossability of amphidiploids between Raphanus sativus and Brassica alboglabra. Dissertation, Wuhan; Huazhong Agricultural University

  • Chen WJ, Li M, Wang TH, Hui RK, Tu JX, Fu TD (2013) Development of New Restorer Materials with Ogu CMS in Brassica napus. Agri Sci Technol 14:18–25

    CAS  Google Scholar 

  • Chiang MS, Chiang BY, Grant WF (1977) Transfer of resistance to race 2 of plasmodiophora Brassica from Brassica napus to cabbage (B. oleracea var. capitata). I. Interspecific hybridization between B. napus and B. oleracea var. capitata. Euphytica 26:319–336

    Article  Google Scholar 

  • Delourme R, Eber F, Renard M (1991) Radish cytoplasmic male sterility in rapeseed: breeding restorer lines with a good female fertility. Proc 8th Int Rapeseed Congr. University Extension Press, University of Saskatchewan, Saskatoon, pp 1506–1510

    Google Scholar 

  • Delourme R, Eber F, Renard M (1995) Breeding double low restorer lines in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). In: Proc 9th Int Rapeseed Congr, vol 1. Cambridge, UK, pp 6–8

  • Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung WY, Landry BS, Renard M (1998) Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor Appl Genet 97:129–134

    Article  CAS  Google Scholar 

  • Delourme R, Horvais R, Valle´e P, Renard M (1999) Double low restored F1 hybrids can be produced with the Ogu-INRA CMS in rapeseed. In: Proc 10th Int Rapeseed Congr. Canberra, pp 26–29

  • Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Catolico L et al (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  CAS  PubMed  Google Scholar 

  • Eenink AH (1974a) Matromorphy in Brassica oleracea L. I. Terminology, parthenogenesis in Cruciferae and the formation and usability of matromorphic plants. Euphytica 23:429–433

    Article  Google Scholar 

  • Eenink AH (1974b) Matromorphy in Brassica oleracea L. II. Differences in parthenogenetic ability and parthenogenesis inducing ability. Euphytica 23:435–445

    Article  Google Scholar 

  • Fang ZY, Sun PT, Liu YM (1983) A Preliminary study on distant hybridization between Raphanus sativus L. and Brassica oleracea L. Acta Horticulturae Sinica 3:008

  • Fang ZY, Sun PT, Liu YM, Yang LM, Wang XW, Hou AF, Bian CS (1997) A male sterile line with dominant gene (MS) in cabbage (Brassica oleracea var. capitata) and its utilization for hybrid seed production. Euphytica 97:265–268

    Article  Google Scholar 

  • Fang ZY, Sun PT, Liu YM et al (2001) Investigation of different types of male sterility and application of dominant male sterility in cabbage. China Veg 1:6–10

    Google Scholar 

  • Feng W, Chen YH (1981) Artificial amphidiploids in an interspecific cross (Brassica oleracea L. × B. pekinensis Rupr.). Acta Horticulturae Sinica 8:37–40

    Google Scholar 

  • Feng J, Primomo V, Li Z, Zhang Y, Jan CC, Tulsieram L, Xu SS (2009) Physical localization and genetic mapping of the fertility restoration gene Rfo in canola (Brassica napus L.). Genome 52:401–407

    Article  CAS  PubMed  Google Scholar 

  • Fu TD, Yang XN, Yang GS (1989) Development and research of Polima cytoplasmic Male Sterility in Brassica napus. J Huazhong Agri Univ 8:201–207

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Expt Cell Res 50:151–158

    Article  CAS  Google Scholar 

  • Gu AX, Shen SX, Chen XP, Zhang CH, Li XF (2006) Allotriploid hybrids obtained from interspecific hybridization between Chinese cabbage and cabbage and the preliminary research on reproductive characters. Acta Horticulturae Sinica 33:73–77

    Google Scholar 

  • Han FQ, Yang C, Fang Z et al (2015) Inheritance and InDel markers closely linked to petal color gene (cpc-1) in Brassica oleracea. Mol Breeding 35:160

    Article  Google Scholar 

  • Heyn FW (1976) Transfer of restorer genes from Raphanus to cytoplasmic male sterile Brassica napus. Cruciferae Newsl 1:15–16

    Google Scholar 

  • Honma S, Summers WL (1976) Interspecific hybridization between Brassica napus L. (Napobrassica group) and B. oleracea L. (Botrytis group). J Am Soc Hortic Sci 101:299–302

    Google Scholar 

  • Hu X, Sullivan-Gilbert M, Kubik T, Danielson J, Hnatiuk N, Marchione W, Greene T, Thompson S (2008) Mapping of the Ogura fertility restorer gene Rfo and development of Rfo allele-specific markers in canola (Brassica napus L.). Mol Breeding 22:663–674

    Article  CAS  Google Scholar 

  • Inomata N (1979) Production of interspeciWc hybrids in Brassica campestris × B. oleracea by culture in vitro of excised ovaries II. Development of excised ovaries on various culture media. Jpn J Breed 29:115–120

    Article  Google Scholar 

  • Jing B, Heng S, Tong D, Wan Z, Fu T et al (2012) A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. J Exp Bot 63:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Kaul MLH (1988) Male Sterility in Higher Plants. Springer, Berlin

    Book  Google Scholar 

  • Li DR (1980) Preliminary report on breeding of three-line system in Brassica napus. Shanxi J Agri Sci 1:26–29

    Google Scholar 

  • Li S, Yang D, Zhu Y (2007) Characterization and use of male sterility in hybrid rice breeding. J Integr Plant Biol 49:791–804

    Article  CAS  Google Scholar 

  • Li Q, Zhou Q, Mei J, Zhang Y, Qian W et al (2014) Improvement of Brassica napus via interspecific hybridization between B. napus and B. oleracea. Mol Breeding 34:1955–1963

    Article  CAS  Google Scholar 

  • Liu XP, Liu ZW, Tu JX, Chen BY, Fu TD (2003) Improvement of microspores culture techniques in Brassica napus L. Hereditas (Beijing) 25:433–436 (in Chinese with English summary)

    Google Scholar 

  • Liu Z, Liu P, Long FR, Hong DF, He QB, Yang GS (2012) Fine mapping and candidate gene analysis of the nuclear restorer gene Rfp for pol CMS in rapeseed (Brassica napus L.). Theor Appl Genet 125:773–779

    Article  CAS  PubMed  Google Scholar 

  • Lv HH, Yang LM, Kang JG et al (2013) Development of InDel markers linked to Fusarium wilt resistance in cabbage. Mol Breeding 32(4):961–967

    Article  CAS  Google Scholar 

  • Mayr E (1986) Joseph Gottlieb Kolreuter’s contributions to biology. Osiris 2:135–176

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nishi S, Kawata J, Toda M (1959) In the breeding of interspecific hybrids between two genomes “c” and “a” of Brassica through the application of embryo culture techniques. Jpn J Breed 5:215–222

    Article  Google Scholar 

  • Ogura H (1968) Studies on the new male sterility in Japanese radish, with special reference to the utilization of this sterility towards practical raising of hybrid seed. Mem Fac Agric Kagoshima Univ 6:39–78

    Google Scholar 

  • Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rousselle P, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191:244–250

    Article  CAS  Google Scholar 

  • Pelletier G, Primard C, Ferault M, Vedel F, Chetrit P, Renard M, Delourme R (1988) Uses of protoplasts in plant breeding: cytoplasmic aspects. Plant Cell Tiss Org Cult 12:173–180

    Article  Google Scholar 

  • Primard-Brisset C, Poupard JP, Horvais R, Eber F, Pelletier G, Remard M, Delourme R (2005) A new recombined double low restorer line for the Ogu-INRA cms in rapeseed (Brassica napus L.). Theor Appl Genet 111:736–746

    Article  CAS  PubMed  Google Scholar 

  • Pu Z, Shimizu M, Zhang Y, Tomohiko N, Takeshi H, Hidetaka M, Ryo F, Keiichi O (2012) Genetic mapping of a fusarium wilt resistance gene in Brassica oleracea. Mol Breeding 30(2):809–818

    Article  CAS  Google Scholar 

  • Qiao HY (2012) Study on the interspecific Hybrids between Brassica rapa and Brassica oleracea. Dissertation, Chinese Academy of Agricultural Sciences, Beijing

  • Qin X, Warguchuk R, Arnal N, Gaborieau L, Mireau H, Brown G (2014) In vivo functional analysis of a nuclear restorer PPR protein. BMC Plant Biol 14:313

    Article  PubMed  PubMed Central  Google Scholar 

  • Quazi MH (1988) Interspecific hybrids between Brassica napus L. and B. oleracea L. developed by embryo culture. Theor Appl Genet 75:309–318

    Article  Google Scholar 

  • Rahman MH, Bennett RA, Yang RC et al (2011) Exploitation of the late flowering species Brassica oleracea L. for the improvement of earliness in B. napus L.: an untraditional approach. Euphytica 177(3):365–374

    Article  Google Scholar 

  • Ripley VL, Beversdorf WD (2003) Development of self-incompatible Brassica napus (I) introgression of S-alleles from Brassica oleracea through interspecific hybridization. Plant Breeding 122:1–5

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Tsuda M, Yasumoto K, Yamagishi H, Terachi T (2012) A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genom 13:352

    Article  CAS  Google Scholar 

  • Thompson KF (1972) Cytoplasmic male sterility in oilseed rape. Heredity 29:253–257

    Article  Google Scholar 

  • Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H (2008) Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell 20:3331–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vedel F, Pla M, Vitart V, Gutierres S, Chetrit P, De Paepe R (1994) Molecular basis of nuclear and cytoplasmic male sterility in higher plants. Plant Physiol Biochem 32:601–608

    CAS  Google Scholar 

  • Virmani SS, Ilyas-Ahmed M (2001) Environment-sensitive genic male sterility (EGMS) in crops. Adv Agron 72:139–195

    Article  CAS  Google Scholar 

  • Walters WT, Mutschler AM, Earle DE (1992) Protoplast fusion-derived Ogura male-sterile cauliflower with cold tolerance. Plant Cell Rep 10:624–628

    Article  CAS  PubMed  Google Scholar 

  • Wang QB, Zhang YY, Fang ZY, Liu YM, Yang LM, Zhuang M (2012) Chloroplast and mitochondrial SSR help to distinguish allo-cytoplasmic male sterile types in cabbage (Brassica oleracea L. var. capitata). Mol Breeding 30:709–716

    Article  Google Scholar 

  • Wen J, Tu JX, Li ZY, Fu TD, Ma CZ, Shen JX (2008) Improving ovary and embryo culture techniques for efficient resynthesis of Brassica napus from reciprocal crosses between yellow-seeded diploids B. rapa and B. oleracea. Euphytica 162:81–89

    Article  Google Scholar 

  • Yang LM, Liu YM, Wang XW, Sun PT, Zhuang M, Fang ZY (1997) Preliminary observation on main botanical characteristics of cytoplasmic male sterile cabbage. China Veg 6:24–25

    Google Scholar 

  • Yang J, Liu X, Yang X, Zhang M (2010) Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea. BMC Plant Biol 10:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin J, Chen S, Tang Z, Chen L, Li J (2004) Resynthesis of Brassica napus through interspecific hybridization between yellow-seeded B. oleracea var. acephala and B. campestris. South West China J Agri Sci 2:149

    CAS  Google Scholar 

  • Zhang GQ, Tang GX, Song WJ, Zhou WJ (2004) Resynthesizing Brassica napus from interspecific hybridization between Brassica rapa and B. oleracea through ovary culture. Euphytica 140:181–187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Jianjun Lei, Prof. Yunchang Li, Prof. Hanzhong Wang, and Prof. Wei Qian for providing materials. This work was supported by grants from the National Natural Science Foundation of China (31272180), the Major State Basic Research Development Program (973 Program, 2012CB113906), the National High Technology Research and Development Program of China (863 Program, 2012AA100102), the Key Projects in the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period (2012BAD02B01), and the earmarked fund for the Modern Agro-Industry Technology Research System, China (nycytx-35-gw01). This work was performed in the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-yong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Richard G.F. Visser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2016_2728_MOESM1_ESM.jpg

Supplementary Fig. S1 Multiple sequence alignment of Rfo sequences with Rfo-homologous sequences in B.oleracea, B.napus, B.rapa (JPEG 2678 kb)

122_2016_2728_MOESM2_ESM.jpg

Supplementary Fig. S2 Sequence alignment of Rfo fragment with Rfo-like fragment amplified by primers Con-F/Con-R. The red arrows represent the location of the primers BnRFO-AS2F/BnRFO-NEW-R (JPEG 4826 kb)

122_2016_2728_MOESM3_ESM.jpg

Supplementary Fig. S3 Embryo development during the embryo rescue process. (a) Freshly removed pods. (b) Excised embryos. (c) Collapsed embryos. (d) Development of pods during the embryo rescue process. (e) Development of embryos in the early period (< 15 days after pollination). (f) Development of embryos in the late period (> 25 days after pollination) (JPEG 631 kb)

122_2016_2728_MOESM4_ESM.jpg

Supplementary Fig. S4 Fertility performance of (a) YL2, and (b) YL5 at different days after flowering (DAF). The red arrows represent the variation of pollen at different DAFs. Left panels: pollen performance; Right panels: pollen viability (JPEG 290 kb)

122_2016_2728_MOESM5_ESM.jpg

Supplementary Fig. S5 (a) PCR amplification in partial BC1 progenies using the novel allele-specific Rfo marker. Lanes 1-8: non-restored BC1 progenies, lanes 9-16: restored- fertility BC1 progenies. Pollen performance in non-restored BC1 progenies (b) and restored- fertility BC1 progenies (c,d) (JPEG 146 kb)

122_2016_2728_MOESM6_ESM.jpg

Supplementary Fig. S6 Protein sequence alignment of Rfo with Rfo homologous sequences in B.oleracea, B.napus, B.rapa (JPEG 2342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Hl., Fang, Zy., Liu, Ym. et al. Development of a novel allele-specific Rfo marker and creation of Ogura CMS fertility-restored interspecific hybrids in Brassica oleracea . Theor Appl Genet 129, 1625–1637 (2016). https://doi.org/10.1007/s00122-016-2728-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2728-9

Keywords

Navigation