Skip to main content
Birkhäuser

Pattern Formation in Viscous Flows

The Taylor-Couette Problem and Rayleigh-Bénard Convection

  • Book
  • © 1999

Overview

Part of the book series: International Series of Numerical Mathematics (ISNM, volume 128)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (4 chapters)

Keywords

About this book

It seems doubtful whether we can expect to understand fully the instability of fluid flow without obtaining a mathematical representa­ tion of the motion of a fluid in some particular case in which instability can actually be ob­ served, so that a detailed comparison can be made between the results of analysis and those of experiment. - G.l. Taylor (1923) Though the equations of fluid dynamics are quite complicated, there are configurations which allow simple flow patterns as stationary solutions (e.g. flows between parallel plates or between rotating cylinders). These flow patterns can be obtained only in certain parameter regimes. For parameter values not in these regimes they cannot be obtained, mainly for two different reasons: • The mathematical existence of the solutions is parameter dependent; or • the solutions exist mathematically, but they are not stable. For finding stable steady states, two steps are required: the steady states have to be found and their stability has to bedetermined.

Authors and Affiliations

  • Max-Planck-Institut für Plasmaphysik, Garching bei München, Germany

    Rita Meyer-Spasche

Bibliographic Information

Publish with us