The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Maximum Likelihood

  • Jack R. Porter
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_976

Abstract

Maximum likelihood is a method of estimation developed for fully specified parametric likelihood settings. In smooth parametric models, maximum likelihood has a number of desirable properties, including consistency, asymptotic normality, and asymptotic efficiency. Maximum likelihood has been usefully extended to various semiparametric and nonparametric settings.

Keywords

Asymptotic normality Bootstrap Confidence region Consistency EM algorithm Empirical likelihood Fisher, R. A. Generalized method of moments Invariance Law of large numbers Likelihood principle Local likelihood Log likelihood ratio Maximum likelihood Nonparametric regression Semiparametric estimation Statistical inference Sufficiency 
This is a preview of subscription content, log in to check access

Bibliography

  1. Ai, C. 1997. A semiparametric maximum likelihood estimator. Econometrica 65: 933–963.CrossRefGoogle Scholar
  2. Barndorff-Nielsen, O.E. 1983. On a formula for the distribution of the maximum likelihood estimator. Biometrika 70: 343–365.CrossRefGoogle Scholar
  3. Berger, J., and R. Wolpert. 1988. The likelihood principle. Hayward: Institute of Mathematical Statistics.Google Scholar
  4. Brown, B., and W. Newey. 2002. Generalized method of moments, efficient bootstrapping, and improved inference. Journal of Business and Economic Statistics 20: 507–517.CrossRefGoogle Scholar
  5. Eaton, M. 1989. Group invariance applications in statistics. Hayward: Institute of Mathematical Statistics.Google Scholar
  6. Efron, B. 1982. Maximum likelihood and decision theory. Annals of Statistics 10: 340–356.CrossRefGoogle Scholar
  7. Fan, J., M. Farmen, and I. Gijbels. 1998. Local maximum likelihood estimation and inference. Journal of the Royal Statistical Society (Series B) 60: 591–608.CrossRefGoogle Scholar
  8. Fisher, R.A. 1922. On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London A 222: 309–360.CrossRefGoogle Scholar
  9. Fisher, R.A. 1925. Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society 22: 700–725.CrossRefGoogle Scholar
  10. Fisher, R.A. 1934. Two new properties of mathematical likelihood. Proceedings of the Royal Society of London A 144: 285–307.CrossRefGoogle Scholar
  11. Gourieroux, C., A. Monfort, and A. Trognon. 1984. Pseudo maximum likelihood methods: theory. Econometrica 52: 681–700.CrossRefGoogle Scholar
  12. Hajivassiliou, V., and P. Ruud. 1994. Classical estimation methods for LDV models using simulation. In Handbook of Econometrics, ed. D. McFadden and R. Engle, vol. 4. Amsterdam: North-Holland.Google Scholar
  13. Hirano, K., and J. Porter. 2003. Asymptotic efficiency in parametric structural models with parameter dependent support. Econometrica 71: 1307–1338.CrossRefGoogle Scholar
  14. Hirano, K., and J. Porter 2005. Efficiency in asymptotic shift models, Working paper. University of Wisconsin.Google Scholar
  15. Ibragimov, I.A., and R.Z. Has’minskii. 1981. Statistical estimation: Asymptotic theory. New York: Springer-Verlag.CrossRefGoogle Scholar
  16. Le Cam, L. 1986. Asymptotic methods in statistical decision theory. New York: Springer-Verlag.CrossRefGoogle Scholar
  17. Le Cam, L. 1990. Maximum likelihood: An introduction. International Statistical Review 58: 153–171.CrossRefGoogle Scholar
  18. Linton, O., and Z. Xiao. 2007. A nonparametric regression estimator that adapts to error distribution of unknown form. Econometric Theory 23(3) (forthcoming)Google Scholar
  19. MacLachlan, G., and T. Krishnan. 1997. The EM algorithm and extensions. New York: Wiley.Google Scholar
  20. Neyman, J., and E.L. Scott. 1948. Consistent estimates based on partially consistent observations. Econometrica 16: 1–32.CrossRefGoogle Scholar
  21. Owen, A.B. 2001. Empirical likelihood. New York: Chapman-Hall.CrossRefGoogle Scholar
  22. Pfanzagl, J., and W. Wefelmeyer. 1978. A Third-order optimum property of the maximum likelihood estimator. Journal of Multivariate Analysis 8: 1–29.CrossRefGoogle Scholar
  23. Tibshirani, R., and T. Hastie. 1987. Local likelihood estimation. Journal of the American Statistical Association 82: 559–567.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Jack R. Porter
    • 1
  1. 1.