The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Game Theory

  • R. J. Aumann
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_942

Abstract

Game theory concerns the behaviour of decision makers whose decisions affect each other. Its analysis is from a rational rather than a psychological or sociological viewpoint. It is indeed a sort of umbrella theory for the rational side of social science, where ‘social’ is interpreted broadly, to include human as well as non-human players (computers, animals, plants). Its methodologies apply in principle to all interactive situations, especially in economics, political science, evolutionary biology, and computer science. There are also important connections with accounting, statistics, the foundations of mathematics, social psychology, law, business, and branches of philosophy such as epistemology and ethics.

Keywords

Asymmetric information Aumann, R. J. Axelrod, R. Axiomatics Bargaining Bounded rationality Brouwer’s fixed-point theorem Coalitional games Coalitions Common knowledge assumption Competitive equilibrium Consistency Continuous games Cooperative game theory Cooperative games Cores Correlated equilibria Cost allocation Differential games Distributed computing Duality theorems Dynamic games Ethics Evolutionary economics Expected utility theory Extensive form games Fixed threats Folk theorem Game theory Games of incomplete information General equilibrium Gillies, D. Harsanyi, J. Impossibility theorem Imputations Individual rationality Kakutani’s fixed point theorem Kernel Kuhn, H. Lemke-Howson algorithm Linear inequalities Linear programming Luce, R. Market games Mathematical economics Mathematical programming Milnor, J. Minimax theorem Mixed strategy game Monopoly Monopsony Morgenstern, O. Nash equilibrium Nash program Nash, J. Net worth Non-cooperative games Nucleolus Oligopoly Perfect information Prisoner’s dilemma Probability distributions Raiffa, H. Ramsey, F. Randomization Refinements of Nash equilibrium Repeated games Savage, L. Selten, R. Shadow pricing Shapley value Shapley, L. Shubik, M. Small worlds Maynard Smith, J. Solution concepts Stable set theory Statistical decision theory Stochastic games Strategic equilibrium Strategic games Strictly competitive games Strictly determined games Subgame perfection Subgames Super additivity Testing Tit for tat Transferable utility Tucker, A. Uncertainty Utility functions Value equivalence principle von Neumann, J. Voting games Weighted voting game Zermelo’s theorem Zero-sum games 

JEL Classifications

C7 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Anderson, R.M 1986. Notions of core convergence. In Hildebrand and Mas-Colell (1986), 25–46.Google Scholar
  2. Arrow, K.J. 1951. Social choice and individual values. New York: Wiley.Google Scholar
  3. Arrow, K.J., and G. Debreu. 1954. Existence of an equilibrium for a competitive economy. Econometrica 22: 265–290.CrossRefGoogle Scholar
  4. Artstein, Z. 1972. Values of games with denumerable many players. International Journal of Games Theory 3: 129–140.Google Scholar
  5. Asscher, N. 1976. An ordinal bargaining set for games without side payments. Mathematics of Operations Research 1: 381–389.CrossRefGoogle Scholar
  6. Aumann, R.J. 1960. Linearity of unrestrictedly transferable utilities. Naval Research Logistics Quarterly 7: 281–284.CrossRefGoogle Scholar
  7. Aumann, R.J. 1961. The core of a cooperative game without sidepayments. Transactions of the American Mathematical Society 98: 539–552.CrossRefGoogle Scholar
  8. Aumann, R.J. 1964. Markets with a continuum of traders. Econometrica 32: 39–50.CrossRefGoogle Scholar
  9. Aumann, R.J. 1975. Values of markets with a continuum of traders. Econometrica 43: 611–646.CrossRefGoogle Scholar
  10. Aumann, R.J. 1985. On the non-transferable utility value: A comment on the Roth-Shafer examples. Econometrica 53: 667–677.CrossRefGoogle Scholar
  11. Aumann, R.J. 1987. Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55: 1–18.CrossRefGoogle Scholar
  12. Aumann, R.J., and J.H. Drèze. 1974. Cooperative games with coalition structures. International Journal of Games Theory 3: 217–238.CrossRefGoogle Scholar
  13. Aumann, R.J., and M. Kurz. 1977. Power and taxes. Econometrica 45: 1137–1161.CrossRefGoogle Scholar
  14. Aumann, R.J., and M. Maschler. 1985. Game theoretic analysis of a bankruptcy problem from the Talmud. Journal of Economic Theory 36: 195–213.CrossRefGoogle Scholar
  15. Aumann, R.J., and B. Peleg. 1960. Von Neumann-Morgenstern solutions to cooperative games without side payments. Bulletin of the American Mathematical Society 66: 173–179.CrossRefGoogle Scholar
  16. Aumann, R.J., and L.S. Shapley. 1974. Values of non-atomic games. Princeton: Princeton University Press.Google Scholar
  17. Axelrod, R. 1984. The evolution of cooperation. New York: Basic Books.Google Scholar
  18. Balinski, M.L., and H.P. Young. 1982. Fair representation. New Haven: Yale University Press.Google Scholar
  19. Berbee, H. 1981. On covering single points by randomly ordered intervals. Annals of Probability 9: 520–528.CrossRefGoogle Scholar
  20. Bewley, T., and E. Kohlberg. 1976. The asymptotic theory of stochasticgames. Mathematics of Operations Research 1: 197–208.CrossRefGoogle Scholar
  21. Billera, L.J. 1970a. Existence of general bargaining sets for cooperative games without side payments. Bulletin of the American Mathematical Society 76: 375–379.CrossRefGoogle Scholar
  22. Billera, L.J. 1970b. Some theorems on the core of an n-person game without side payments. SIAM Journal of Applied Mathematics 18: 567–579.CrossRefGoogle Scholar
  23. Billera, L.J., and R. Bixby. 1973. A characterization of polyhedral market games. International Journal of Games Theory 2: 253–261.CrossRefGoogle Scholar
  24. Billera, L.J., and D.C. Heath. 1982. Allocation of shared costs: A set of axioms yielding a unique procedure. Mathematics of Operations Research 7: 32–39.CrossRefGoogle Scholar
  25. Billera, L.J., D.C. Heath, and J. Raanan. 1978. Internal telephone billing rates – A novel application of non-atomic game theory. Operations Research 26: 956–965.CrossRefGoogle Scholar
  26. Binmore, K. 1982. Perfect equilibria in bargaining models, ICERD discussion paper no. 58. London: London School of Economics.Google Scholar
  27. Blackwell, D. 1956. An analogue of the minimax theorem for vector payoffs. Pacific Journal of Mathematics 6: 1–8.CrossRefGoogle Scholar
  28. Blackwell, D., and T.S. Ferguson. 1968. The big match. Annals of Mathematical Statistics 39: 159–163.CrossRefGoogle Scholar
  29. Bogardi, I., and F. Szidarovsky. 1976. Application of game theory in water management. Applied Mathematical Modelling 1: 11–20.CrossRefGoogle Scholar
  30. Bondareva, O.N. 1963. Some applications of linear programming methods to the theory of cooperative games [in Russian]. Problemy Kibernetiki 10: 119–139.Google Scholar
  31. Borel, E. 1924. Sur les jeux où interviennent l’hasard et l’habilité des joueurs. In Eléments de la theorie des probabilités, ed. J. Hermann, 204–224. Paris: Librairie Scientifique.Google Scholar
  32. Braithwaite, R.B., and F.P. Ramsey, eds. 1950. The foundations of mathematics and other logical essays. New York: Humanities Press.Google Scholar
  33. Brams, S.J., W.F. Lucas, and P.D. Straffin Jr., eds. 1983. Political and related models. New York: Springer.Google Scholar
  34. Brown, D.J., and P. Loeb. 1976. The values of non-standard exchangeeconomies. Israel Journal of Mathematics 25: 71–86.CrossRefGoogle Scholar
  35. Brown, D.J., and A. Robinson. 1975. Non standard exchange economies. Econometrica 43: 41–55.CrossRefGoogle Scholar
  36. Case, J.H. 1979. Economics and the competitive process. New York: New York University Press.Google Scholar
  37. Champsaur, P. 1975. Cooperation vs. competition. Journal of Economic Theory 11: 394–417.CrossRefGoogle Scholar
  38. Dantzig, G.B. 1951a. A proof of the equivalence of the programming problem and the game problem. In Koopmans (1951), 330–338.Google Scholar
  39. Dantzig, G.B. 1951b. Maximization of a linear function of variables subject to linear inequalities. In Koopmans (1951), 339–347.Google Scholar
  40. Davis, M. 1964. Infinite games with perfect information. In Dresher, Shapley and Tucker (1964), 85–101.Google Scholar
  41. Davis, M. 1967. Existence of stable payoff configurations for cooperative games. In Shubik (1967), 39–62.Google Scholar
  42. Davis, M., and M. Maschler. 1965. The kernel of a cooperative game. Naval Research Logistics Quarterly 12: 223–259.CrossRefGoogle Scholar
  43. Debreu, G. 1952. A social equilibrium existence theorem. Proceedings of the National Academy of Sciences of the United States 38: 886–893.CrossRefGoogle Scholar
  44. Debreu, G., and H. Scarf. 1963. A limit theorem on the core of aneconomy. International Economic Review 4: 236–246.CrossRefGoogle Scholar
  45. Dresher, M.A., A.W. Tucker, and P. Wolfe, eds. 1957. Contributions to the theory of games III, Annals of Mathematics studies series 39. Princeton: Princeton University Press.Google Scholar
  46. Dresher, M.A., L.S. Shapley, and A.W. Tucker, eds. 1964. Advances in game theory, Annals of Mathematics studies series 52. Princeton: Princeton University Press.Google Scholar
  47. Drèze, J.H., Gabszewicz, J., and Gepts, S. 1969. On cores and competitive equilibria. In Guilbaud (1969), 91–114.Google Scholar
  48. Dubey, P. 1980. Asymptotic semivalues and a short proof of Kannai’s theorem. Mathematics of Operations Research 5: 267–270.CrossRefGoogle Scholar
  49. Dubey, P., and Shapley, L.S. 1980. Non cooperative exchange with a continuum of traders: Two models. Technical Report of the Institute for Advanced Studies, Hebrew University of Jerusalem.Google Scholar
  50. Edgeworth, F.Y. 1881. Mathematical psychics. London: Kegan Paul.Google Scholar
  51. Everett, H. 1957. Recursive games. In Dresher, Tucker and Wolfe (1957), 47–78.Google Scholar
  52. Fogelman, F., and M. Quinzii. 1980. Asymptotic values of mixedgames. Mathematics of Operations Research 5: 86–93.CrossRefGoogle Scholar
  53. Gabszewicz, J.J., and J.F. Mertens. 1971. An equivalence theorem for the core of an economy whose atoms are not ‘too’ big. Econometrica 39: 713–721.CrossRefGoogle Scholar
  54. Gale, D. 1974. A curious nim-type game. American Mathematical Monthly 81: 876–879.CrossRefGoogle Scholar
  55. Gale, D. 1979. The game of hex and the Brouwer fixed-point theorem. American Mathematical Monthly 86: 818–827.CrossRefGoogle Scholar
  56. Gale, D. 1986. Bargaining and competition, Part I: Characterization. Part II: Existence. Econometrica 54 (785–806): 807–818.CrossRefGoogle Scholar
  57. Gale, D., and L.S. Shapley. 1962. College admissions and the stability of marriage. American Mathematical Monthly 69: 9–15.CrossRefGoogle Scholar
  58. Gale, D., and F.H. Stewart. 1953. Infinite games with perfect information. In Kuhn and Tucker (1953), 245–266.Google Scholar
  59. Galil, Z. 1974. The nucleolus in games with major and minor players. International Journal of Games Theory 3: 129–140.CrossRefGoogle Scholar
  60. Gillies, D.B. 1959. Solutions to general non-zero-sum games. In Luce and Tucker (1959), 47–85.Google Scholar
  61. Guilbaud, G.T., ed. 1969. La décision: aggrégation et dynamique des orders de préférence. Paris: Editions du CNRS.Google Scholar
  62. Harsanyi, J.C. 1956. Approaches to the bargaining problem before and after the theory of games: A critical discussion of Zeuthen’s, Hicks’ and Nash’s theories. Econometrica 24: 144–157.CrossRefGoogle Scholar
  63. Harsanyi, J.C. 1959. A bargaining model for the cooperative n-person game. In Tucker and Luce (1959), 325–356.Google Scholar
  64. Harsanyi, J.C. 1963. A simplified bargaining model for the n-person cooperative game. International Economic Review 4: 194–220.CrossRefGoogle Scholar
  65. Harsanyi, J.C. 1966. A general theory of rational behavior in game situations. Econometrica 34: 613–634.CrossRefGoogle Scholar
  66. Harsanyi, J.C. 1967–8. Games with incomplete information played by‘Bayesian’ players, parts I, II and III. Management Science 14: 159–182, 320–334, 486–502.Google Scholar
  67. Harsanyi, J.C. 1973. Games with randomly disturbed payoffs: A new rationale for mixed strategy equilibrium points. International Journal of Games Theory 2: 1–23.CrossRefGoogle Scholar
  68. Harsanyi, J.C. 1982. Solutions for some bargaining games under the Harsanyi-Selten solution theory I: Theoretical preliminaries; II: Analysis of specific games. Mathematical Social Sciences 3 (179–91): 259–279.CrossRefGoogle Scholar
  69. Harsanyi, J.C., and R. Selten. 1972. A generalized Nash solution for two-person bargaining games with incomplete information. Management Science 18: 80–106.CrossRefGoogle Scholar
  70. Harsanyi, J.C., and R. Selten. 1987. A general theory of equilibrium selection in games. Cambridge, MA: MIT Press.Google Scholar
  71. Hart, S. 1973. Values of mixed games. International Journal of Games Theory 2: 69–86.CrossRefGoogle Scholar
  72. Hart, S. 1974. Formation of cartels in large markets. Journal of Economic Theory 7: 453–466.CrossRefGoogle Scholar
  73. Hart, S. 1977a. Asymptotic values of games with a continuum of players. Journal of Mathematical Economics 4: 57–80.CrossRefGoogle Scholar
  74. Hart, S. 1977b. Values of non-differentiable markets with a continuum of traders. Journal of Mathematical Economics 4: 103–116.CrossRefGoogle Scholar
  75. Hart, S. 1980. Measure-based values of market games. Mathematics of Operations Research 5: 197–228.CrossRefGoogle Scholar
  76. Hart, S. 1985a. An axiomatization of Harsanyi’s nontransferable utility solution. Econometrica 53: 1295–1314.CrossRefGoogle Scholar
  77. Hart, S. 1985b. Non zero-sum two-person repeated games with incomplete information. Mathematics of Operations Research 10: 117–153.CrossRefGoogle Scholar
  78. Hart, S., and A. Mas-Colell. 1986. The potential: A new approach to the value in multi-person allocation problems. Harvard University Discussion Paper No. 1157.Google Scholar
  79. Hart, S., and D. Schmeidler. 1988. Correlated equilibria: An elementary existence proof. Mathematics of Operations Research.Google Scholar
  80. Hildenbrand, W., ed. 1982. Advances in economic theory. Cambridge: Cambridge University Press.Google Scholar
  81. Hildenbrand, W., and A. Mas-Colell. 1986. Contributions to mathematical economics in honor of G. Debreu. Amsterdam: North-Holland.Google Scholar
  82. Hu, T.C., and S.M. Robinson, eds. 1973. Mathematical programming. New York: Academic.Google Scholar
  83. Isaacs, R. 1965. Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization. New York: Wiley.Google Scholar
  84. Kakutani, S. 1941. A generalization of Brouwer’s fixed point theorem. Duke Mathematical Journal 8: 457–459.CrossRefGoogle Scholar
  85. Kalai, E., and M. Smorodinsky. 1975. Other solutions to Nash’s bargainingproblem. Econometrica 43: 513–518.CrossRefGoogle Scholar
  86. Kaneko, M., and M. Wooders. 1982. Cores of partitioning games. Mathematical Social Sciences 3: 313–327.CrossRefGoogle Scholar
  87. Kannai, Y. 1966. Values of games with a continuum of players. Israel Journal of Mathematics 4: 54–58.CrossRefGoogle Scholar
  88. Kohlberg, E. 1971. On the nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 20: 62–66.CrossRefGoogle Scholar
  89. Kohlberg, E. 1972. The nucleolus as a solution to a minimization problem. SIAM Journal of Applied Mathematics 23: 34–49.CrossRefGoogle Scholar
  90. Koopmans, T.C., ed. 1951. Activity analysis of production and allocation. New York: Wiley.Google Scholar
  91. Kuhn, H.W. 1952. Lectures on the theory of games. Issued as a report of the Logistics Research Project, Office of Naval Research, Princeton University.Google Scholar
  92. Kuhn, H.W. 1953. Extensive games and the problem of information. In Kuhn and Tucker (1953), 193–216.Google Scholar
  93. Kuhn, H.W., and A.W. Tucker, eds. 1950. Contributions to the theory of games I, Annals of Mathematics studies series 24. Princeton: Princeton University Press.Google Scholar
  94. Kuhn, H.W., and A.W. Tucker, eds. 1953. Contributions to the theory of games II, Annals of Mathematics studies series 28. Princeton: Princeton University Press.Google Scholar
  95. Lemke, L.E., and J.T. Howson. 1962. Equilibrium points of bimatrix games. SIAM Journal of Applied Mathematics 12: 413–423.CrossRefGoogle Scholar
  96. Lensberg, T. 1981. The stability of the Nash solution. Unpublished.Google Scholar
  97. Lewis, D.K. 1969. Convention. Cambridge, MA: Harvard University Press.Google Scholar
  98. Littlechild, S.C. 1976. A further note on the nucleolus of the ‘airportgame’. International Journal of Games Theory 5: 91–95.CrossRefGoogle Scholar
  99. Littlechild, S.C., and G. Owen. 1973. A simple expression for the Shapley value in a special case. Management Science 20: 370–372.CrossRefGoogle Scholar
  100. Lucas, W.F. 1969. The proof that a game may not have a solution. Transactions of the American Mathematical Society 137: 219–229.CrossRefGoogle Scholar
  101. Lucas, W.F. 1983. Measuring power in weighted voting systems. In Brams, Lucas and Straffin (1983), ch. 9.Google Scholar
  102. Lucas, W.F., and M. Rabie. 1982. Games with no solutions and emptycore. Mathematics of Operations Research 7: 491–500.CrossRefGoogle Scholar
  103. Luce, R.D., and H. Raiffa. 1957. Games and decisions, introduction and critical survey. New York: Wiley.Google Scholar
  104. Luce, R.D., and A.W. Tucker, eds. 1959. Contributions to the theory of games IV, Annals of Mathematics studies series 40. Princeton: Princeton University Press.Google Scholar
  105. Lyapounov, A.A. 1940. On completely additive vector-functions (in Russian, abstract in French). Akademiia Nauk USSR Izvestiia Seriia Mathematicheskaia 4: 465–478.Google Scholar
  106. Martin, D.A. 1975. Borel determinacy. Annals of Mathematics 102: 363–371.CrossRefGoogle Scholar
  107. Maschler, M., ed. 1962. Recent advances in game theory. Proceedings of a Conference, privately printed for members of the conference. Princeton: Princeton University Conferences.Google Scholar
  108. Maschler, M., and M. Perles. 1981. The superadditive solution for the Nash bargaining game. International Journal of Games Theory 10: 163–193.CrossRefGoogle Scholar
  109. Maschler, M., B. Peleg, and L.S. Shapley. 1979. Geometric properties of the kernel, nucleolus, and related solution concepts. Mathematics of Operations Research 4: 303–338.CrossRefGoogle Scholar
  110. Mas-Colell, A. 1975. A further result on the representation of games by markets. Journal of Economic Theory 10: 117–122.CrossRefGoogle Scholar
  111. Mas-Colell, A. 1977. Competitive and value allocations of large exchange economies. Journal of Economic Theory 14: 419–438.CrossRefGoogle Scholar
  112. Mas-Colell, A. 1988. An equivalence theorem for a bargaining set. Journal of Mathematical Economics.Google Scholar
  113. Maynard Smith, J. 1982. Evolution and the theory of games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  114. Mertens, J.F. 1982. Repeated games: An overview of the zero-sum case. In Hildenbrand (1982), 175–182.Google Scholar
  115. Mertens, J.F. 1988. The Shapley value in the non-differentiable case. International Journal of Games Theory 17: 1–65.CrossRefGoogle Scholar
  116. Mertens, J.F., and A. Neyman. 1981. Stochastic games. International Journal of Games Theory 10: 53–66.CrossRefGoogle Scholar
  117. Milnor, J.W. 1978. Values of large games II: Oceanic games. Mathematics of Operations Research 3: 290–307.CrossRefGoogle Scholar
  118. Milnor, J.W. and Shapley, L.S. 1957. On games of survival. In Dresher, Tucker and Wolfe (1957), 15–45.Google Scholar
  119. Moschovakis, Y.N. 1980. Descriptive set theory. New York: North-Holland.Google Scholar
  120. Moschovakis, Y.N., ed. 1983. Cabal seminar 79–81: Proceedings, Caltech-UCLA Logic Seminar 1979–81, Lecture notes in Mathematics 1019. New York: Springer-Verlag.Google Scholar
  121. Mycielski, J., and H. Steinhaus. 1964. On the axiom of determinateness. Fundamenta Mathematicae 53: 205–224.CrossRefGoogle Scholar
  122. Myerson, R.B. 1977. Graphs and cooperation in games. Mathematics of Operations Research 2: 225–229.CrossRefGoogle Scholar
  123. Myerson, R.B. 1979. Incentive compatibility and the bargaining problem. Econometrica 47: 61–74.CrossRefGoogle Scholar
  124. Myerson, R.B. 1984. Cooperative games with incomplete information. International Journal of Games Theory 13: 69–96.CrossRefGoogle Scholar
  125. Nash, J.F. Jr. 1950. The bargaining problem. Econometrica 18: 155–162.CrossRefGoogle Scholar
  126. Nash, J.F. Jr. 1951. Non-cooperative games. Annals of Mathematics 54: 289–295.CrossRefGoogle Scholar
  127. Neyman, A. 1985a. Bounded complexity justifies cooperation in the finitely repeated prisoner’s dilemma. Economics Letters 19: 227–230.CrossRefGoogle Scholar
  128. Neyman, A. 1985b. Semivalues of political economic games. Mathematics of Operations Research 10: 390–402.CrossRefGoogle Scholar
  129. Neyman, A. 1987. Weighted majority games have an asymptotic value. Mathematics of Operations Research.Google Scholar
  130. O’Neill, B. 1987. Non-metric test of the minimax theory of two-person zero-sum games. Proceedings of the National Academy of Sciences of the United States 84: 2106–2109.CrossRefGoogle Scholar
  131. Owen, G. 1972. Multilinear extensions of games. Management Science 18: 64–79.CrossRefGoogle Scholar
  132. Peleg, B. 1963a. Solutions to cooperative games without side payments. Transactions of the American Mathematical Society 106: 280–292.CrossRefGoogle Scholar
  133. Peleg, B. 1963b. Bargaining sets of cooperative games without side payments. Israel Journal of Mathematics 1: 197–200.CrossRefGoogle Scholar
  134. Peleg, B. 1967. Existence theorem for the bargaining set M1(i). In Shubik (1967), 53–56.Google Scholar
  135. Peleg, B. 1968. On weights of constant-sum majority games. SIAM Journal of Applied Mathematics 16: 527–532.CrossRefGoogle Scholar
  136. Peleg, B. 1985. An axiomatization of the core of cooperative games without side payments. Journal of Mathematical Economics 14: 203–214.CrossRefGoogle Scholar
  137. Peleg, B. 1986. On the reduced game property and its converse. International Journal of Games Theory 15: 187–200.CrossRefGoogle Scholar
  138. Pennock, J.R., and J.W. Chapman, eds. 1968. Representation. New York: Atherton.Google Scholar
  139. Ramsey, F.P. 1931. Truth and probability. In Braithwaite (1950).Google Scholar
  140. Ransmeier, J.S. 1942. The Tennesee valley authority: A case study in the economics of multiple purpose stream planning. Nashville: Vanderbilt University Press.Google Scholar
  141. Regelmann, K., and E. Curio. 1986. How do great tit (Parus major) pair mates cooperate in broad defence? Behavior 97: 10–36.CrossRefGoogle Scholar
  142. Riker, W.H. and Shapley, L.S. 1968. Weighted voting: A mathematical analysis for instrumental judgements. In Pennock and Chapman (1968), 199–216.Google Scholar
  143. Robinson, A. 1974. Non-standard analysis. Amsterdam: North-Holland.Google Scholar
  144. Rosenthal, R.W. 1979. Sequences of games with varying opponents. Econometrica 47: 1353–1366.CrossRefGoogle Scholar
  145. Rosenthal, R.W., and A. Rubinstein. 1984. Repeated two player games withruin. International Journal of Games Theory 13: 155–177.CrossRefGoogle Scholar
  146. Roth, A.E. 1977. The Shapley value as a von Neumann-Morgenstern utility. Econometrica 45: 657–664.CrossRefGoogle Scholar
  147. Roth, A.E. 1984. The evolution of the labor market for medical interns and residents: A case study in game theory. Journal of Political Economy 92: 991–1016.CrossRefGoogle Scholar
  148. Roth, A.E., and R.E. Verrecchia. 1979. The Shapley value as applied to cost allocation: A reinterpretation. Journal of Accounting Research 17: 295–303.CrossRefGoogle Scholar
  149. Rubinstein, A. 1982. Perfect equilibrium in a bargaining model. Econometrica 50: 97–109.CrossRefGoogle Scholar
  150. Rubinstein, A. 1986. Finite automata play the repeated prisoner’s dilemma. Journal of Economic Theory 39: 83–96.CrossRefGoogle Scholar
  151. Savage, L.J. 1954. The foundations of statistics. New York: Wiley.Google Scholar
  152. Scarf, H.E. 1967. The core of an n-person game. Econometrica 35: 50–69.CrossRefGoogle Scholar
  153. Scarf, H.E. 1973. The computation of economic equilibria. New Haven: Yale University Press.Google Scholar
  154. Schelling, T.C. 1960. The strategy of conflict. Cambridge, MA: Harvard University Press.Google Scholar
  155. Schmeidler, D. 1969. The nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 17: 1163–1170.CrossRefGoogle Scholar
  156. Selten, R.C. 1965. Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetragheit. Zeitschrift für die Gesammte Staatswissenschaft 121: 301–324; 667–689.Google Scholar
  157. Selten, R.C. 1975. Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Games Theory 4: 25–55.CrossRefGoogle Scholar
  158. Selten, R.C. 1980. A note on evolutionary stable strategies in asymmetric animal conflicts. Journal of Theoretical Biology 84: 101–101.CrossRefGoogle Scholar
  159. Selten, R.C. 1983. Evolutionary stability in extensive two-part games. Mathematical Social Sciences 5: 269–363.CrossRefGoogle Scholar
  160. Shapley, L.S. 1953a. Stochastic games. Proceedings of the National Academy of Sciences of the United States 39: 1095–1100.CrossRefGoogle Scholar
  161. Shapley, L.S. 1953b. A value for n-person games. In Kuhn and Tucker (1953), 305–317.Google Scholar
  162. Shapley, L.S. 1962. Values of games with infinitely many players. In Maschler (1962), 113–118.Google Scholar
  163. Shapley, L.S. 1964. Values of large games, VII: A general exchange economy with money. RAND Publication RM–4248, Santa Monica.Google Scholar
  164. Shapley, L.S. 1967. On balanced sets and cores. Naval Research Logistics Quarterly 14: 453–460.CrossRefGoogle Scholar
  165. Shapley, L.S. 1969a. Utility comparison and the theory of games. In Guilbaud (1969), 251–263.Google Scholar
  166. Shapley, L.S. 1969b. On market games. Journal of Economic Theory 1: 9–25.CrossRefGoogle Scholar
  167. Shapley, L.S. 1969c. Pure competition, coalitional power and fair division. International Economic Review 10: 337–362.CrossRefGoogle Scholar
  168. Shapley, L.S. 1973a. On balanced games without side payments. In Hu and Robinson (1973), 261–290.Google Scholar
  169. Shapley, L.S. 1973b. Let’s block ‘block’. Econometrica 41: 1201–1202.CrossRefGoogle Scholar
  170. Shapley, L.S. 1984. Convergence of the bargaining set for differentiable market games. Appendix B in Shubik (1984), 683–692.Google Scholar
  171. Shapley, L.S., and M. Shubik. 1954. A method for evaluating the distribution of power in a committee system. American Political Science Review 48: 787–792.CrossRefGoogle Scholar
  172. Shitovitz, B. 1973. Oligopoly in markets with a continuum of traders. Econometrica 41: 467–501.CrossRefGoogle Scholar
  173. Shubik, M. 1959a. Edgeworth market games. In Luce and Tucker (1959), 267–278.Google Scholar
  174. Shubik, M. 1959b. Strategy and market structure. New York: Wiley.Google Scholar
  175. Shubik, M., ed. 1967. Essays in mathematical economics in honor of Oskar Morgenstern. Princeton: Princeton University Press.Google Scholar
  176. Shubik, M. 1973. Commodity, money, oligopoly, credit and bankruptcy in a general equilibrium model. Western Economic Journal 11: 24–36.Google Scholar
  177. Shubik, M. 1982. Game theory in the social sciences, concepts and solutions. Cambridge, MA: MIT Press.Google Scholar
  178. Shubik, M. 1984. A game theoretic approach to political economy. Cambridge, MA: MIT Press.Google Scholar
  179. Sobolev, A.I. 1975. Characterization of the principle of optimality for cooperative games through functional equations (in Russian). In Vorobiev (1975), 94–151.Google Scholar
  180. Sorin, S. 1986a. On repeated games of complete information. Mathematics of Operations Research 11: 147–160.CrossRefGoogle Scholar
  181. Sorin, S. 1986b. An asymptotic property of non-zero sum stochastic games. International Journal of Games Theory 15 (2): 101–107.CrossRefGoogle Scholar
  182. Tauman, Y. 1981. Value on a class of non-differentiable market games. International Journal of Games Theory 10: 155–162.CrossRefGoogle Scholar
  183. Ville, J.A. 1938. Sur le théorie générale des jeux où intervient I’habilité des joueurs. In Traité du calcul des probabilités et de ses applications, ed. E. Borel, vol. 4, 105–113. Paris: Gauthier-Villars.Google Scholar
  184. Vinacke, W.E., and A. Arkoff. 1957. An experimental study of coalitions in the triad. American Sociological Review 22: 406–415.CrossRefGoogle Scholar
  185. Vind, K. 1965. A theorem on the core of an economy. Review of Economic Studies 32: 47–48.CrossRefGoogle Scholar
  186. von Neumann, J. 1928. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100: 295–320.CrossRefGoogle Scholar
  187. von Neumann, J. 1949. On rings of operators. Reduction theory. Annals of Mathematics 50: 401–485.CrossRefGoogle Scholar
  188. von Neumann, J., and O. Morgenstern. 1944. Theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  189. Vorobiev, N.N., ed. 1975. Mathematical Methods in Social Science (in Russian). Vipusk 6, Vilnius.Google Scholar
  190. Wilson, R. 1978. Information, efficiency, and the core of an economy. Econometrica 46: 807–816.CrossRefGoogle Scholar
  191. Wolfe, P. 1955. The strict determinateness of certain infinite games. Pacific Journal of Mathematics 5: 841–847.CrossRefGoogle Scholar
  192. Wooders, M.H. 1983. The epsilon core of a large replica game. Journal of Mathematical Economics 11: 277–300.CrossRefGoogle Scholar
  193. Wooders, M.H., and W.R. Zame. 1984. Approximate cores of largegames. Econometrica 52: 1327–1350.CrossRefGoogle Scholar
  194. Young, H.P. 1985. Monotonic solutions of cooperative games. International Journal of Games Theory 14: 65–72.CrossRefGoogle Scholar
  195. Zermelo, E. 1913. Über eine Anwendung der Mengenlehre auf die theorie des Schachspiels. Proceedings of the Fifth International Congress of Mathematicians 2: 501–504.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • R. J. Aumann
    • 1
  1. 1.