The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Arrow–Debreu Model of General Equilibrium

  • John Geanakoplos
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_535

Abstract

In the 1950s Kenneth Arrow and Gerard Debreu showed that the market system could be comprehensively analysed in terms of the neoclassical methodological premises of individual rationality, market clearing, and rational expectations, using the two mathematical techniques of convexity and fixed point theory. In so doing they greatly advanced the use of mathematics in economics.

Keywords

Agent optimization Arrow–Debreu model of general equilibrium Asymmetric information Bankruptcy Bounded rationality Brouwer’s fixed point theorem Coalitions Commodities Comparative statics Competitive equilibrium Consumption loan model Convexity Core Cournot’s duopoly model Differential pay principle Existence of equilibrium Externalities Fixed point theorems General equilibrium Hicks, J. R. Incomplete markets Individualism Insurance markets Interpersonal utility comparisons Kakutani’s fixed point theorem Lindahl equilibrium Local uniqueness Market clearing Mathematical economics Mathematics and economics Microfoundations Minkowski’s theorem Monotonicity Negative prices Neoclassical economics Neoclassical production function Non-satiation hypothesis Ordinal utility Overlapping generations model Pareto optimality Preference Price Rational expectations Rational expectations equilibrium Rationality Risk allocation Samuelson, P. A. Sard’s theorem Separating hyperplane theorem Tâtonnement Transversality theory Uncertainty Utility Walras’s Law Welfare economics Welfare theorems 

JEL Classifications

D5 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Arrow, K.J. 1951. An extension of the basic theorems of classical welfare economics. In Proceedings of the second Berkeley symposium on mathematical statistics and probability, ed. J. Neyman, 507–532. Berkeley: University of California Press.Google Scholar
  2. Arrow, K.J. 1953. Le rôle des valeus boursières pour la répartition la meilleure des risques, Econométrie, 41–48. Paris: Centre National de la Recherche Scientifique.Google Scholar
  3. Arrow, K.J. 1969. The organization of economic activity: Issues pertinent to the choice of market vs nonmarket allocation. Reprinted in Collected papers of Kenneth Arrow, vol. II, 133–55. Cambridge, MA: Belknap Press.Google Scholar
  4. Arrow, K.J., and G. Debreu. 1954. Existence of an equilibrium for a competitive economy. Econometrica 22: 265–290.CrossRefGoogle Scholar
  5. Aumann, R.J. 1964. Markets with a continuum of traders. Econometrica 32: 39–50.CrossRefGoogle Scholar
  6. Balasko, Y. 1986. Foundations of the theory of general equilibrium. New York: Academic Press.Google Scholar
  7. Bewley, T. 1972. Existence of equilibria in economies with infinitely many commodities. Journal of Economic Theory 4: 514–540.CrossRefGoogle Scholar
  8. Cournot, A. 1838. Recherches sur les principes mathématiques de la théorie des richesses. Paris: L. Hachette.Google Scholar
  9. Debreu, G. 1951. The coefficient of resource utilization. Econometrica 19: 273–292.CrossRefGoogle Scholar
  10. Debreu, G. 1959. Theory of value: An axiomatic analysis of economic equilibrium. New York: Wiley.Google Scholar
  11. Debreu, G. 1970. Economies with a finite set of equilibria. Econometrica 38: 387–392.CrossRefGoogle Scholar
  12. Debreu, G. 1974. Excess functions. Journal of Mathematical Economics 1: 15–21.CrossRefGoogle Scholar
  13. Debreu, G., and H. Scarf. 1963. A limit theorem on the core of an economy. International Economic Review 4: 235–246.CrossRefGoogle Scholar
  14. Dierker, E. 1974. Topological methods in Walrasian economics. Berlin: Springer.CrossRefGoogle Scholar
  15. Drèze, J. 1974. Investment under private ownership: Optimality, equilibrium, and stability. In Allocation under uncertainty, ed. J. Drèze. New York: Macmillan.Google Scholar
  16. Duffie, D., and W. Shafer. 1985. Equilibrium in incomplete markets: I-A basic model of generic existence. Journal of Mathematical Economics 14 (3): 285–300.CrossRefGoogle Scholar
  17. Geanakoplos, J.D., and H.M. Polemarchakis. 1987. Existence, regularity, and constrained suboptimality of equilibrium with incomplete asset markets. In Essays in honor of Kenneth J. Arrow, ed. W. Heller, R. Starr, and D. Starrett, vol. 3. New York: Cambridge University Press.Google Scholar
  18. Grossman, S. 1981. An introduction to the theory of rational expectations under asymmetric information. Review of Economic Studies 48: 541–560.CrossRefGoogle Scholar
  19. Grossman, S., and O. Hart. 1979. A theory of competitive equilibrium in stock market economies. Econometrica 47: 293–329.CrossRefGoogle Scholar
  20. Hart, O. 1975. On the optimality of equilibrium when the market structure is incomplete. Journal of Economic Theory 11 (3): 418–433.CrossRefGoogle Scholar
  21. Hicks, J.R. 1939. Value and capital. Oxford: Clarendon Press.Google Scholar
  22. Koopmans, T.C., ed. 1951. Activity analysis of production and allocation. New York: Wiley.Google Scholar
  23. Kuhn, H.W., and A.W. Tucker. 1951. Nonlinear programming. In Proceedings of the second Berkeley symposium on mathematical statistics and probability, ed. J. Neyman, 481–492. Berkeley: University of California Press.Google Scholar
  24. Lange, O. 1942. The foundations of welfare economics. Econometrica 10: 215–228.CrossRefGoogle Scholar
  25. Lucas, R.E. 1972. Expectations and the neutrality of money. Journal of Economic Theory 4: 103–124.CrossRefGoogle Scholar
  26. McKenzie, L.W. 1954. On equilibrium in Graham’s model of world trade and other competitive systems. Econometrica 22: 147–161.CrossRefGoogle Scholar
  27. McKenzie, L.W. 1959. On the existence of general equilibrium for a competitive market. Econometrica 27: 54–71.CrossRefGoogle Scholar
  28. Nash, J.F. 1950. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the USA 36: 48–49.CrossRefGoogle Scholar
  29. Pareto, V. 1909. Manuel d’économie politique. Paris: Giard.Google Scholar
  30. Radner, R. 1968. Competitive equilibrium under uncertainty. Econometrica 36 (1): 31–58.CrossRefGoogle Scholar
  31. Radner, R. 1979. Rational expectations equilibrium: Generic existence and the information revealed by prices. Econometrica 17: 655–678.CrossRefGoogle Scholar
  32. Samuelson, P.A. 1947. Foundations of economic analysis. Cambridge, MA: Harvard University Press.Google Scholar
  33. Samuelson, P.A. 1958. An exact consumption-loan model of interest with or without the social contrivance of money. Journal of Political Economy 66: 467–482.CrossRefGoogle Scholar
  34. Scarf, H. (with the collaboration of T. Hansen.). 1973. The computation of economic equilibria. New Haven: Yale University Press.Google Scholar
  35. Shapley, L., and M. Shubik. 1977. Trade using one commodity as a means of payment. Journal of Political Economy 85: 937–968.CrossRefGoogle Scholar
  36. Smale, S. 1976. A convergent process of price adjustment and global Newton methods. Journal of Mathematical Economics 3: 107–120.CrossRefGoogle Scholar
  37. Sonnenschein, H. 1973. Do Walras’ identity and continuity characterize the class of community excess demand functions? Journal of Economic Theory 6: 345–354.CrossRefGoogle Scholar
  38. Sraffa, P. 1960. Production of commodities by means of commodities. Cambridge: Cambridge University Press.Google Scholar
  39. von Neumann, J. 1928. Zur theorie der Gesellschaftsspiele. Mathematische Annalen 100: 295–320.CrossRefGoogle Scholar
  40. von Neumann, J. 1937. Uber ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes. Ergebnisse eines mathematischen Kolloquiums 8: 73–83.Google Scholar
  41. von Neumann, J., and O. Morgenstern. 1944. Theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  42. Walras, L. 1874–7. Eléments d’économie politique pure. Lausanne: L. Corbaz.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • John Geanakoplos
    • 1
  1. 1.