The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Computation of General Equilibria

  • Herbert E. Scarf
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_451

Abstract

The Walrasian model of economic equilibrium is a generalization to the entire economy of the basic notion that prices move to levels that equilibrate supply and demand. Although the model avoids some factors of economic significance, it is extremely useful in helping us evaluate the effects of changes in economic policy or the economic environment. A moderately realistic model designed to illustrate a significant economic issue typically involves a large system of highly nonlinear equations and inequalities. Existence of a solution is demonstrated by non-constructive fixed point theorems. The explicit numerical solution of such a model requires sophisticated computational techniques.

Keywords

Arrow–Debreu model Barone, E. Brouwer’s fixed-point theorem Cobb–Douglas function Computation of general equilibria General equilibrium Harberger, A. Johansen, L. Kakutani’s fixed-point theorem Kuhn–Tucker Theorem Lange, O. Non-convexity Sperner’s lemma Technical coefficients of production Uncertainty Walras’s Law Walrasian model 

JEL Classifications

C68 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Adelman, I., and S. Robinson. 1978. Income distribution policy in developing countries: A case study of Korea. Stanford: Stanford University Press.Google Scholar
  2. Ballard, C.L., D. Fullerton, J.B. Shoven, and J. Whalley. 1985. A general equilibrium model for tax policy evaluation. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  3. Barone, E. 1908. Il Ministerio della Produzione nello stato colletivista. Giornale degli Economisti e Revista di Statistica. Trans. as The Ministry of Production in the Collectivist State. In Collectivist economic planning, ed. F.A. Hayek. London: G. Routledge & Sons, 1935.Google Scholar
  4. Brouwer, L.E.J. 1912. ÜberAbbildungen von Mannigfaltigkeiten. Mathematische Annalen 71: 97–115.CrossRefGoogle Scholar
  5. Debreu, G. 1982. Existence of competitive equilibrium. In Handbook of mathematical economics, ed. K.J. Arrow and M. Intriligator. Amsterdam: North- Holland.Google Scholar
  6. Dixon, P.B., B.R. Parmenter, J. Sutton, and D.P. Vincent. 1982. ORANI: A multisectoral model of the Australian economy. Amsterdam: North-Holland.Google Scholar
  7. Eaves, B.C. 1972. Homotopies for the computation of fixed points. Mathematical Programming 3: 1–22.CrossRefGoogle Scholar
  8. Eaves, B.C., and H. Scarf. 1976. The solution of systems of piecewise linear equations. Mathematics of Operations Research 1: 1–27.CrossRefGoogle Scholar
  9. Ginsburg, V.A., and J.L. Waelbroeck. 1981. Activity analysis and general equilibrium modelling. Amsterdam: North-Holland.Google Scholar
  10. Harberger, A. 1962. The incidence of the corporation income tax. Journal of Political Economics 70: 215–240.CrossRefGoogle Scholar
  11. Hudson, E.A., and D.W. Jorgenson. 1974. US energy policy and economicgrowth. Bell Journal of Economics and Management Science 5: 461–514.CrossRefGoogle Scholar
  12. Johansen, L. 1960. A multi-sectoral study of economic growth. Amsterdam: North-Holland.Google Scholar
  13. Kellogg, R.B., T.Y. Li, and J. Yorke. 1976. A constructive proof of the Brouwer fixed point theorem and computational results. SIAM Journal of Numerical Analysis 13: 473–483.CrossRefGoogle Scholar
  14. Kuhn, H.W. 1968. Simplicial approximation of fixed points. Proceedings of the National Academy of Sciences 61: 1238–1242.CrossRefGoogle Scholar
  15. Lange, O. 1936. On the economic theory of socialism. Review of Economic Studies 4 (53–71): 123–142.Google Scholar
  16. Lemke, C.E. 1965. Bimatrix equilibrium points and mathematical programming. Management Science 11: 681–689.CrossRefGoogle Scholar
  17. Manne, A.S. 1976. ETA: A model of energy technology assessment. Bell Journal of Economics and Management Science 7: 379–2406.CrossRefGoogle Scholar
  18. Merrill, O.H. 1971. Applications and extensions of an algorithm that computers fixed points of certain non-empty convex upper semicontinuous point to set mappings. Technical Report 71–7, University of Michigan.Google Scholar
  19. Milnor, J. 1965. Topology from the differentiable viewpoint. Charlottesville: University of Virginia Press.Google Scholar
  20. Scarf, H.E. 1967. The approximation of fixed points of a continuous mapping. SIAM Journal of Applied Mathematics 15: 1328–1343.CrossRefGoogle Scholar
  21. Scarf, H.E., with the collaboration of T. Hansen. 1973. The computation of economic equilibria. London/New Haven: Yale University Press.Google Scholar
  22. Scarf, H., and J.B. Shoven, eds. 1984. Applied general equilibrium analysis. Cambridge: Cambridge University Press.Google Scholar
  23. Shoven, J.B., and J. Whalley. 1972. A general equilibrium calculation of the effects of differential taxation of income from capital in the U.S. Journal of Public Economy 1: 281–321.CrossRefGoogle Scholar
  24. Shoven, J.B., and J. Whalley. 1984. Applied general-equilibrium models of taxation and international trade. Journal of Economic Literature 22: 1007–1051.Google Scholar
  25. Smale, S. 1976. A convergent process of price adjustment and global Newton methods. Journal of Mathematical Economics 3: 107–120.CrossRefGoogle Scholar
  26. Smale, S. 1981. Global analysis and economics. In Handbook of mathematical economics, ed. K.J. Arrow and M. Intriligator, vol. I. Amsterdam: North-Holland.Google Scholar
  27. Sperner, E. 1928. Neur Beweis für die Invarianz der Dimensionszahl und des Gebietes. Abhandlungen an den mathematischen Seminar der Universität Hamburg 6: 265–272.CrossRefGoogle Scholar
  28. van der Laan, G., and A.J.J. Talman. 1979. A restart algorithm for computing fixed points without an extra dimension. Mathematical Programming 17: 74–84.CrossRefGoogle Scholar
  29. Whalley, J. 1985. Trade liberalization among major world trading areas. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Herbert E. Scarf
    • 1
  1. 1.