The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Divisia Index

  • Charles R. Hulten
Reference work entry


The Divisia index, it its modern application, is a continuous-time index related to an underlying economic structure via a potential function. Under certain conditions, the index can retrieve important characteristics of the underlying structure using prices and quantities alone, without full knowledge about the structure itself. The Divisia index is widely used in theoretical discussions of productivity analysis, and has important applications elsewhere. In practice, it is approximated by discrete–time superlative indexes, like the Tornqvist, or by chain indexes. Older applications of the Divisia stressed its discrete-time axiomatic properties.


Aggregation Chain indexes Continuous–time indexes Discrete–time indexes Divisia index Divisia, F. Duality Path dependence Production functions Productivity (measurement problems) Solow, R. Törnqvist index 

JEL Classifications

C43 C80 E01 
This is a preview of subscription content, log in to check access.


  1. Balk, B. 2005. Divisia price and quantity indices: 80 years after. Statistica Neerlandica 59: 119–158.CrossRefGoogle Scholar
  2. Diewert, W. 1976. Exact and superlative index numbers. Journal of Econometrics 4 (2): 115–145.CrossRefGoogle Scholar
  3. Divisia, F. 1925–6. L’indice monétaire et la théorie de la monnaie. Revue d’Economie Politique 39(4): 842–864; (5): 980–1008; (6): 1121–1151; 40(1): 49–81. Also separately: Paris: Société Anonyme du Recueil Sirey, 1926.Google Scholar
  4. Fisher, I. 1921. The making of index numbers. Boston: Houghton Mifflin Co.Google Scholar
  5. Hulten, C. 1973. Divisia index numbers. Econometrica 41: 1017–1025.CrossRefGoogle Scholar
  6. Hulten, C. 2001. Total factor productivity: A short biography. In New developments in productivity analysis, Studies in income and wealth, ed. C. Hulten, E. Dean, and M. Harper, vol. 63. Chicago: University of Chicago Press for the NBER.CrossRefGoogle Scholar
  7. Richter, M. 1966. Invariance axioms and economic indexes. Econometrica 34: 739–755.CrossRefGoogle Scholar
  8. Samuelson, P., and S. Swamy. 1974. Invariant economic index numbers and canonical duality: Survey and synthesis. American Economic Review 64: 566–593.Google Scholar
  9. Solow, R. 1957. Technical change and the aggregate production function. Review of Economics and Statistics 39: 312–320.CrossRefGoogle Scholar
  10. Törnqvist, L. 1936. The bank of Finland’s consumption price index. Bank of Finland Monthly Bulletin 10: 1–8.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Charles R. Hulten
    • 1
  1. 1.