The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Heavy-Tailed Densities

  • Rustam Ibragimov
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2978

Abstract

This article reviews several frameworks commonly used in modelling heavy-tailed densities and distributions in economics, finance, risk management, econometrics and statistics. The results and conclusions discussed in the article indicate that the presence of heavy tails can either reinforce or reverse the implications of a number of models in these fields, depending on the degree of heavy-tailedness.

Keywords

Heavy-tailed densities Heavy-tailed distributions Power laws Stable distributions Mean Variance Moments Semi-heavy tails Diversification Portfolio choice Value at risk Linear estimators Sample mean Efficiency Regression Robustness Dependence α-symmetric distributions Models with common shocks 

JEL Classification

C10 C13 C16 G11 
This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

The author gratefully acknowledges partial support by NSF grant SES-0821024, a Harvard Academy Junior Faculty Department grant and the Warburg Research Funds (Department of Economics, Harvard University).

Bibliography

  1. Anderson, C. 2006. The long tail. New York: Hyperion.Google Scholar
  2. Axtell, R.L. 2001. Zipf distribution of U.S. firm sizes. Science 293: 1818–1820.CrossRefGoogle Scholar
  3. Bouchard, J.-P., and M. Potters. 2004. Theory of financial risk and derivative pricing: From statistical physics to risk management, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
  4. Embrechts, P., C. Klüppelberg, and T. Mikosch. 1997. Modelling extremal events for insurance and finance. New York: Springer.CrossRefGoogle Scholar
  5. Embrechts, P., A. McNeil, and D. Straumann. 2002. Correlation and dependence in risk management: Properties and pitfalls. In Risk management: Value at risk and beyond, ed. M.A.H. Dempster, 176–223. Cambridge: Cambridge University Press.Google Scholar
  6. Fama, E. 1965. The behavior of stock market prices. Journal of Business 38: 34–105.CrossRefGoogle Scholar
  7. Fang, K.T., S. Kotz, and K.W. Ng. 1990. Symmetric multivariate and related distributions, Vol. 36 of monographs on statistics and applied probability. London: Chapman & Hall.CrossRefGoogle Scholar
  8. Gabaix, X. 1999a. Zipf’s law and the growth of cities. American Economic Review 89: 129–132.CrossRefGoogle Scholar
  9. Gabaix, X. 1999b. Zipf’s law for cities: An explanation. Quarterly Journal of Economics 114: 739–767.CrossRefGoogle Scholar
  10. Gabaix, X., P. Gopikrishnan, V. Plerou, and H.E. Stanley. 2003. A theory of power-law distributions in financial market fluctuations. Nature 423: 267–270.CrossRefGoogle Scholar
  11. Granger, C.W.J., and D. Orr. 1972. Infinite variance and research strategy in time series analysis. Journal of the American Statistical Association 67: 275–285.Google Scholar
  12. Ibragimov, R. 2005a. New majorization theory in economics and martingale convergence results in econometrics. Ph.D. dissertation, Yale University, New Haven.Google Scholar
  13. Ibragimov, R. 2005b. Portfolio diversification and value at risk under thicktailedness, Harvard University Research Discussion Paper 2086. Available at: http://www.economics.harvard.edu/pub/hier/2005/HIER2086.pdf. Accessed 13 Jan 2009. Forthcoming in Quantitative Finance.
  14. Ibragimov, R. 2007. Efficiency of linear estimators under heavy-tailedness: Convolutions of α–symmetric distributions. Econometric Theory 23: 501–517.CrossRefGoogle Scholar
  15. Ibragimov, R., and J. Walden. 2007. The limits of diversification when losses may be large. Journal of Banking and Finance 31: 2551–2569.CrossRefGoogle Scholar
  16. Ibragimov, R., D. Jaffee, and J. Walden. 2008. Nondiversification traps in catastrophe insurance markets. Review of Financial Studies. Available at: http://rfs.oxfordjournals.org/cgi/content/abstract/hhn021v1. Accessed 13 Jan 2009.
  17. Jansen, D.W., and C.G. de Vries. 1991. On the frequency of large stock returns: Putting booms and busts into perspective. Review of Economics and Statistics 73: 18–32.CrossRefGoogle Scholar
  18. Loretan, M., and P.C.B. Phillips. 1994. Testing the covariance stationarity of heavy-tailed time series. Journal of Empirical Finance 1: 211–248.CrossRefGoogle Scholar
  19. Mandelbrot, B. 1963. The variation of certain speculative prices. Journal of Business 36: 394–419.CrossRefGoogle Scholar
  20. Mandelbrot, B. 1997. Fractals and scaling in finance: Discontinuity, concentration, risk. New York: Springer.CrossRefGoogle Scholar
  21. McCulloch, J.H. 1997. Measuring tail thickness to estimate the stable index alpha: A critique. Journal of Business and Economic Statistics 15: 74–81.Google Scholar
  22. McNeil, A.J., R. Frey, and P. Embrechts. 2005. Quantitative risk management: Concepts, techniques, and tools. Princeton: Princeton University Press.Google Scholar
  23. Nešlehova, J., P. Embrechts, and V. Chavez-Demoulin. 2006. Infinite mean models and the LDA for operational risk. Journal of Operational Risk 1: 3–25.CrossRefGoogle Scholar
  24. Rachev, S.T., and S. Mittnik. 2000. Stable Paretian models in finance. New York: Wiley.Google Scholar
  25. Rachev, S.T., C. Menn, and F.J. Fabozzi. 2005. Fat-tailed and skewed asset return distributions: Implications for risk management, portfolio selection, and option pricing. Hoboken: Wiley.Google Scholar
  26. Silverberg, G., and B. Verspagen. 2007. The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance. Journal of Econometrics 139: 318–339.CrossRefGoogle Scholar
  27. Zolotarev, V.M. 1986. One-dimensional stable distributions. Providence: American Mathematical Society.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Rustam Ibragimov
    • 1
  1. 1.