Skip to main content

Turnpike Theory, a Current Perspective

  • Reference work entry
  • First Online:
  • 29 Accesses

Abstract

This 2012 perspective of the 1987 Palgrave entry on ‘turnpike theory’ highlights the subsequent development of the subject in the light of a critical re-reading of the original. It distinguishes the 1949 conception, a response of Samuelson to a 1945 von Neumann challenge to the reception of his growth model in the economic literature, from the more capacious 1976 outline furnished by McKenzie. Thus, it differentiates asymptotic convergence of infinite-horizon optimal programs from what it terms their finite-horizon, classical turnpike counterparts. It identifies a move from the investigation of general theorems to a more detailed working of simple examples, and reports results on specific models of ‘choice of technique’ in development planning, and of lumber extraction in the economics of forestry. Drawing on ongoing advances in the field of dynamical systems, it sees such models as both litmus tests of the general theory and as productive settings to study the rationalisability of policy functions and a ‘folk theorem of intertemporal resource allocation’. The entry concludes with brief speculative remarks for future directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   6,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   8,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Aghion, P. and Durlauf, S. N. (eds.) 2005. Handbook of economic growth. Vols. 1 and 2. Amsterdam: North-Holland.

    Google Scholar 

  • Arkin, V., and I. Evstigneev. 1987. Stochastic models of control and economic dynamics. New York: Academic.

    Google Scholar 

  • Arrow, K.J., and F.H. Hahn. 1971. General competitive analysis. San Francisco: Holden Day.

    Google Scholar 

  • Arrow, K. J., Hurwicz, L. and Uzawa, H. (eds.) 1958. Studies in linear and non linear programming. Palo Alto: Stanford University Press.

    Google Scholar 

  • Barnsley, M.F. 2006. Superfractals. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Benhabib, J. 1992. Cycles and chaos in economic equilibrium. Princeton: Princeton University Press.

    Google Scholar 

  • Bewley, T.F. 2007. General equilibrium, overlapping generations models and optimal growth theory. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • Bhattacharya, R., and M. Majumdar. 2004. Dynamical systems subject to random shocks: An introduction. Economic Theory 23: 1–12.

    Article  Google Scholar 

  • Bhattacharya, R. and Majumdar, M. (eds.) 2007. Random dynamical systems. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Boldrin, M., and L. Montrucchio. 1986a. Cyclic and chaotic behavior in intertemporal optimization models. Mathematical Modelling 8: 697–700.

    Article  Google Scholar 

  • Boldrin, M., and L. Montrucchio. 1986b. On the indeterminacy of capital accumulation paths. Journal of Economic Theory 40: 26–39.

    Article  Google Scholar 

  • Borwein, J., and D. Bailey. 2008. Mathematics by experiment. 2nd ed. Wellesley: A. K. Peters.

    Google Scholar 

  • Carlson, D.A., A.B. Haurie, and A. Leizarowitz. 1991. Infinite horizon optimal control: Deterministic and stochastic systems. Berlin: Springer.

    Book  Google Scholar 

  • Dana, R. A., Le Van, C., Mitra, T. and Nishimura, K. (eds.) 2006. Handbook of optimal growth. Vol. 1. Berlin: Springer.

    Google Scholar 

  • Debreu, G. 1983. Mathematical economics. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Deneckere, R., and S. Pelikan. 1986. Competitive chaos. Journal of Economic Theory 40: 13–25.

    Article  Google Scholar 

  • Dorfman, R., R.M. Solow, and P.A. Samuelson. 1958. Linear programming and economic analysis. New York: McGraw-Hill Book Co..

    Google Scholar 

  • Follmer, H., and M. Majumdar. 1978. On the asymptotic behavior of stochastic economic processes. Journal of Mathematical Economics 5: 275–287.

    Article  Google Scholar 

  • Fujio, M. 2009. Optimal transition dynamics in the Leontief two-sector growth model with durable capital: The case of capital intensive consumption goods. Japanese Economic Review 60: 490–511.

    Article  Google Scholar 

  • Gale, D. 1970. Nonlinear duality and qualitative properties of optimal growth. In Integer and nonlinear programming, ed. J. Abadie, 309–319. Amsterdam: North-Holland.

    Google Scholar 

  • Joshi, S. 1998. Turnpike theorems in nonconvex nonstationary environments. International Economic Review 28: 225–248.

    Google Scholar 

  • Karlin, S.J. 1960. Mathematical methods and theory in games, programming and economics. Reading MA: Addison-Wesley.

    Google Scholar 

  • Khan, M. Ali. 2005. Intertemporal ethics, modern capital theory and the economics of forestry, Chapter 2. In Sustainability, economics and natural resources: Economics of sustainable forest management, ed. S. Kant and A. Berry, 39–65. Netherlands: Springer.

    Chapter  Google Scholar 

  • Khan, M.Ali. 2010. La concorrenza perfetta come teoria dell’equilibrio. In La matematica, ed. C. Bartocci and P. Odifreddi, Vol. IV. Rome: Einaudi (English translation available as Perfect Competition as Equilibrium Theory).

    Google Scholar 

  • Khan, M. Ali, and T. Mitra. 2005. On choice of technique in the Robinson–Solow–Srinivasan model. International Journal of Economic Theory 1: 83–109.

    Article  Google Scholar 

  • Khan, M. Ali, and T. Mitra. 2010. Discounted optimal growth in the two-sector RSS model: A further geometric investigation. mimeo: Johns Hopkins University.

    Google Scholar 

  • Khan, M. Ali, and T. Mitra. 2011. Complicated dynamics and parametric restrictions in the Robinson-Solow-Srinivasan model. mimeo: Cornell University.

    Google Scholar 

  • Khan, M. Ali, and T. Mitra. 2012a. Long run optimal behavior in a two-sector Robinson–Solow–Srinivasan model. Macroeconomic Dynamics 16: 70–85.

    Article  Google Scholar 

  • Khan, M. Ali, and T. Mitra. 2012b. Impatience and dynamic optimal behavior: A bifurcation analysis of the Robinson–Solow–Srinivasan model. Nonlinear Analysis 75: 1400–1418.

    Article  Google Scholar 

  • Khan, M. Ali, and A. Piazza. 2010a. On uniform convergence of undiscounted optimal programs in the Mitra–Wan forestry model: The strictly concave case. International Journal of Economic Theory 6: 57–76.

    Article  Google Scholar 

  • Khan, M. Ali, and A. Piazza. 2010b. On the non-existence of optimal programs in the Robinson–Solow–Srinivasan (RSS) model. Economics Letters 109: 94–98.

    Article  Google Scholar 

  • Khan, M. Ali, and A. Piazza. 2011a. Classical turnpike theory and the economics of forestry. Journal of Behavioral Economics and Organization 79: 194–201.

    Article  Google Scholar 

  • Khan, M. Ali, and A. Piazza. 2011b. The concavity assumption on felicities and asymptotic dynamics in the RSS model. Set-Valued and Variational Analysis 19: 135–156.

    Article  Google Scholar 

  • Khan, M. Ali, and A. Piazza. 2011c. Optimal cyclicity and chaos in the 2-sector RSS model: An anything-goes construction. Journal of Economic Behavior and Organization 80: 397–417.

    Article  Google Scholar 

  • Khan, M. Ali, and A. Piazza. 2011d. An overview of turnpike theory: Towards the discounted deterministic case. Advances in Mathematical Economics 14: 39–67.

    Article  Google Scholar 

  • Khan, M. Ali, and A. Piazza. 2011e. The economics of forestry and a set-valued turnpike of the classical type. Nonlinear Analysis 74: 171–181.

    Article  Google Scholar 

  • Khan, M. Ali, and A. Piazza. 2012. On the Mitra–Wan forestry model: A unified analysis. Journal of Economic Theory 147: 230–260.

    Article  Google Scholar 

  • Khan, M. Ali, and A.J. Zaslavski. 2006. On a uniform turnpike of the third kind in the Robinson–Solow–Srinivasan model. Journal of Economics 92: 137–166.

    Article  Google Scholar 

  • Khan, M. Ali, and A.J. Zaslavski. 2009. On existence of weakly maximal programs: The RSS model with non-concave felicities. Journal of Mathematical Economics 45: 624–633.

    Article  Google Scholar 

  • Khan, M. Ali, and A.J. Zaslavski. 2010. On two classical turnpike results for the Robinson–Solow–Srinivasan (RSS) model. Advances in Mathematical Economics 13: 47–97.

    Article  Google Scholar 

  • Koopmans, T. C. 1970. Scientific papers of Tjalling C. Koopmans. Vols. 1 and 2. Berlin: Springer.

    Google Scholar 

  • Majumdar, M., and M. Nermuth. 1982. Dynamic optimization in non-convex models with irreversible investment: Monotonicity and turnpike results. Zeitschrift für Nationalökonomie 42: 339–362.

    Article  Google Scholar 

  • Majumdar, M. Mitra, T. and Nishimura, K. (eds.) 2000. Optimization and chaos. Berlin: Springer.

    Google Scholar 

  • May, R.B. 1976. Simple mathematical models with very complicated dynamics. Nature 40: 459–467.

    Article  Google Scholar 

  • McKenzie, L.W. 1986. Optimal economic growth, turnpike theorems and comparative dynamics. In Handbook of mathematical economics, ed. K.J. Arrow and M. Intrilligator, Vol. 3, 1281–1355. New York: North-Holland.

    Google Scholar 

  • McKenzie, L.W. 1987. Turnpike theory. In The new palgrave, ed. J. Eatwell, M. Milgate, and P.K. Newman. London: MacMillan.

    Google Scholar 

  • McKenzie, L.W. 1998. Turnpikes. American Economic Review, Papers and Proceedings 88: 1–14.

    Google Scholar 

  • McKenzie, L.W. 2002. Classical general equilibrium theory. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Mitra, T. 2005. Characterization of the turnpike property of optimal paths in the aggregative model of intertemporal allocation. International Journal of Economic Theory 1: 247–275.

    Article  Google Scholar 

  • Samuelson, P.A. 1965–2011. The collected scientific papers of Paul A. Samuelson. Vol. 1–7. Cambridge, MA: MIT Press.

    Google Scholar 

  • Simons, S. 2008. From Hahn–Banach to monotonicity. Berlin: Springer.

    Google Scholar 

  • Yano, M. 1990. von Neumann facets and the dynamic stability of perfect foresight equilibrium paths in neo-classical trade models. Journal of Economics 51: 27–96.

    Article  Google Scholar 

  • Yano, M. 1998. On the dual stability of a von Neumann facet and the inefficacy of temporary fiscal policy. Econometrica 66: 427–451.

    Article  Google Scholar 

  • Zaslavski, A.J. 2005. Turnpike properties in the calculus of variations and optimal control. New York: Springer.

    Google Scholar 

  • Zaslavski, A.J. 2009. Two turnpike results for discrete-time optimal control systems. Nonlinear Analysis 71: 902–909.

    Article  Google Scholar 

  • Zaslavski, A.J. 2010. Structure of approximate solutions for discrete-time optimal control systems arising in economic dynamics. Nonlinear Analysis 73: 952–970.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Copyright information

© 2018 Macmillan Publishers Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ali Khan, M., Piazza, A. (2018). Turnpike Theory, a Current Perspective. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95189-5_2943

Download citation

Publish with us

Policies and ethics