The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd


  • David Draper
Reference work entry


Exchangeability is an invariance property of probability distributions that is central to the process of specifying Bayesian statistical models. Exchangeability judgements play a role in Bayesian modelling analogous to judgments in frequentist modelling that observable quantities may be regarded as realizations of independent identically distributed (IID) random variables. Judgements of conditional exchangeability (given the values of relevant covariates), when combined with Bayesian nonparametric modelling, provide a principled and rather general approach to Bayesian model specification that can lead to well-calibrated inferences and predictions; other approaches to achieving this goal include cross-validation and Bayesian model averaging.


Bayes’ th Bayesian nonparametric methods Bayesian statistics Bernoulli distributions Cumulative distribution functions Dirichlet process priors Exchangeability Frequentist statistics Markov chain Monte Carlo methods Model averaging Model specification Model uncertainty Pólya trees Prior distributions Random variables Uncertainty 

JEL Classification

This is a preview of subscription content, log in to check access.


  1. Bernardo, J.M., and A.F.M. Smith. 1994. Bayesian theory. New York: Wiley.CrossRefGoogle Scholar
  2. de Finetti, B. 1930. Funzione caratteristica di un fenomeno aleatorio. Memorie della Reale Accademia dei Lincei 4: 86–133.Google Scholar
  3. de Finetti, B. 1937. La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut H. Poincaré 7, 1–68. Reprinted in translation as: Foresight: its logical laws, its subjective sources. In Studies in Subjective Probability, ed. H.E. Kyburg and H.E. Smokler. New York: Dover, 1980.Google Scholar
  4. de Finetti, B. 1938. Sur la condition d’équivalence partielle. Actualités Scientifiques et Industrielles 739. Reprinted in translation as: On the condition of partial exchangeability. In Studies in Inductive Logic and Probability, ed. R.C. Jeffrey. Berkeley: University of California Press, 1980.Google Scholar
  5. de Finetti, B. 1970. Teoria delle Probabilità, 2 vols. Turin: Eunaudi. Reprinted in translation as de Finetti B. 1974–75. Theory of Probability, 2 vols. Chichester: Wiley, 1974–75.Google Scholar
  6. Dey, D.D., P. Müller, and D. Sinha (eds.). 1998. Practical nonparametric and semiparametric Bayesian statistics. New York: Springer.Google Scholar
  7. Diaconis, P., and D. Freedman. 1980. Finite exchangeable sequences. Ann. Probab. 8: 745–764.CrossRefGoogle Scholar
  8. Draper, D. 1995. Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society: Series B 57: 45–97.Google Scholar
  9. Draper, D. 2007. Bayesian multilevel analysis and MCMC. In Handbook of multilevel analysis, ed. J. de Leeuw and E. Meijer. New York: Springer.Google Scholar
  10. Draper, D., J. Hodges, C. Mallows, and D. Pregibon. 1993. Exchangeability and data analysis (with discussion). Journal of Royal Statistics Society, Series A 156: 9–37.CrossRefGoogle Scholar
  11. Ferguson, T.S. 1973. A Bayesian analysis of some nonparametric problems. The Annals of Statistics 1: 209–230.CrossRefGoogle Scholar
  12. Fisher, R.A. 1956. Statistical methods and scientific inference. Edinburgh: Oliver and Boyd.Google Scholar
  13. Fréchet, M. 1943. Les Probabilités Associées à un Système d’Événements Compatibles et Dépendents, vol. 2. Paris: Hermann et Cie.Google Scholar
  14. Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (eds.). 1995. Markov Chain Monte Carlo in practice. New York: Chapman & Hall/CRC.Google Scholar
  15. Good, I.J. 1950. Probability and the weighing of evidence. London: Charles Griffin.Google Scholar
  16. Good, I.J. 1965. The estimation of probabilities: An essay on modern Bayesian methods. Cambridge, MA: MIT Press.Google Scholar
  17. Haag, J. 1924. Sur un problème général de probabilités et ses diverses applications. Proceedings of the International Congress of Mathematics (Toronto) 2: 659–674.Google Scholar
  18. Hewitt, E., and L.J. Savage. 1955. Symmetric measures on Cartesian products. Transactions of the American Mathematical Society 80: 470–501.CrossRefGoogle Scholar
  19. Jaynes, E.T. 2003. Probability theory: The logic of science. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  20. Johnson, W.E. 1924. Logic. III. The logical foundations of science. Cambridge, UK: Cambridge University Press.Google Scholar
  21. Khintchine, A.I. 1932. Sur les classes d’événements équivalents. Mathematics of the USSR – Sbornik 39: 40–43.Google Scholar
  22. Lavine, M. 1992. Some aspects of Pólya tree distributions for statistical modeling. The Annals of Statistics 20: 1222–1235.CrossRefGoogle Scholar
  23. Leamer, E.E. 1978. Specification searches: Ad Hoc inference with nonexperimental data. New York: Wiley.Google Scholar
  24. Lindley, D.V., and M.R. Novick. 1981. The role of exchangeability in inference. The Annals of Statistics 9: 45–58.CrossRefGoogle Scholar
  25. Savage, L.J. 1954. The foundations of statistics. New York: Wiley.Google Scholar
  26. Stone, M. 1974. Cross-validation choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society: Series B 36: 111–147.Google Scholar
  27. Tukey, J.W. 1962. The future of data analysis. Annals of Mathematical Statistics 33: 1–67.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • David Draper
    • 1
  1. 1.