The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Quantile Regression

  • Moshe Buchinsky
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2795

Abstract

A semiparametric technique that has been gaining considerable popularity in economics, the quantile regression model has a number of attractive features. For example, it can be used to characterize the entire conditional distribution of a dependent variable given a set of regressors; it has a linear programming representation which makes estimation easy; and it gives a robust measure of location. Concentrating on cross-section applications, this article presents the basic structure of the quantile regression model, highlights the most important features, and provides the elementary tools for using quantile regressions in empirical applications.

Keywords

Asymptotic covariance matrix Boostrap Censored quantile regression model Design matrix bootstrapping Equivariance Generalized method of moments Heteroskedasticity Kernel estimators in econometrics Least absolute deviation Linear programming Optimal minimum distance estimator Quantile regression Semiparametric estimation Tobit model 
This is a preview of subscription content, log in to check access

Bibliography

  1. Andrews, D., and M. Buchinsky. 2000. A three-step method for choosing the number of bootstrap repetitions. Econometrica 68: 23–51.CrossRefGoogle Scholar
  2. Bofinger, E. 1975. Estimation of density function using order statistics. Australian Journal of Statistics 17: 1–7.CrossRefGoogle Scholar
  3. Buchinsky, M. 1994. Changes in the U.S. wage structure 1963–1987: Application of quantile regression. Econometrica 62: 405–458.CrossRefGoogle Scholar
  4. Buchinsky, M. 1995. Estimating the asymptotic covariance matrix for quantile regression models: A Monte Carlo study. Journal of Econometrics 68: 303–338.CrossRefGoogle Scholar
  5. Efron, B. 1979. Bootstrap methods: Another look at the jackknife. Annals of Statistics 7: 1–26.CrossRefGoogle Scholar
  6. Hansen, L. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50: 1029–1054.CrossRefGoogle Scholar
  7. Huber, P. 1967. The behavior of maximum likelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability Vol. 1. Berkeley: University of California Press.Google Scholar
  8. Koenker, R. 2005. Quantile regression. Econometric Society Monograph. New York: Cambridge University Press.CrossRefGoogle Scholar
  9. Koenker, R., and G. Bassett. 1978a. The asymptotic distribution of the least absolute error estimator. Journal of the American Statistical Association 73: 618–622.CrossRefGoogle Scholar
  10. Koenker, R., and G. Bassett. 1978b. Regression quantiles. Econometrica 46: 33–50.CrossRefGoogle Scholar
  11. Newey, W., and J. Powell. 1990. Efficient estimation of linear and type I censored regression models under conditional quantile restrictions. Econometric Theory 6: 295–317.CrossRefGoogle Scholar
  12. Portnoy, S., and R. Koenker. 1989. Adaptive L-estimation for linear models. Annals of Statistics 17: 362–381.CrossRefGoogle Scholar
  13. Powell, J. 1984. Least absolute deviation estimation for the censored regression model. Journal of Econometrics 25: 303–325.CrossRefGoogle Scholar
  14. Powell, J. 1986. Censored regression quantiles. Journal of Econometrics 32: 143–155.CrossRefGoogle Scholar
  15. Siddiqui, M. 1960. Distribution of quantile from a bivariate population. Journal of Research of the National Bureau of Standards 64: 145–150.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Moshe Buchinsky
    • 1
  1. 1.