The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Auctions (Theory)

  • Lawrence M. Ausubel
Reference work entry


Auction theory has undergone two waves of innovation. The first, which originated with Vickrey (1961) and was completed in the early 1980s, focused on single-item auctions. Results included: guiding principles such as revenue equivalence; the derivation of the optimal auction; and comparisons of first-price, second-price and English auctions. The second, influenced by Treasury and spectrum auctions, emerged in the 1990s and dealt particularly with multi-item auctions. Research has studied: static auctions, including pay-as-bid and uniform-price auctions; dynamic auctions such as simultaneous ascending and clock auctions; combinatorial auctions; and efficient auction design. Much progress has been made, but outstanding problems remain.


Auctions Auctions (theory) Bidding Clock auction Coalitional form game Combinatorial auctions Complements Core Demand reduction Dutch auction Efficient auctions English auction Envelope theorem Equilibrium Experimental economics First-price auction Game theory Games of complete information Games of incomplete information Incentive compatibility Linkage principle Optimal auctions Pay-as-bid auction Private information Revenue equivalence theorem Sealed-bid auctions Second-price auction Simultaneous ascending auctions Sincere bidding Spectrum auctions Subgame perfection Substitutes Tâtonnement Treasury auctions Uniform-price auction Vickrey auction Vickrey, W. S. Walrasian auctioneer Winner’s curse 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Ausubel, L.M. 2004. An efficient ascending-bid auction for multiple objects. American Economic Review 94: 1452–1475.CrossRefGoogle Scholar
  2. Ausubel, L.M. 2006. An efficient dynamic auction for heterogeneous commodities. American Economic Review 96: 602–629.CrossRefGoogle Scholar
  3. Ausubel, L.M., and P. Cramton. 2002. Demand reduction and inefficiency in multiunit auctions. Working Paper 96–07, Department of Economics, University of Maryland.Google Scholar
  4. Ausubel, L.M., and P.R. Milgrom. 2002. Ascending auctions with package bidding. Frontiers of Theoretical Economics 1(1), Article 1.Google Scholar
  5. Ausubel, L.M., and J. Schwartz. 1999. The ascending auction paradox. Mimeo: University of Maryland.Google Scholar
  6. Banks, J.S., J.O. Ledyard, and D.P. Porter. 1989. Allocating uncertain and unresponsive resources: An experimental approach. RAND Journal of Economics 20: 1–25.CrossRefGoogle Scholar
  7. Bernheim, B.D., and M. Whinston. 1986. Menu auctions, resource allocation and economic influence. Quarterly Journal of Economics 101: 1–31.CrossRefGoogle Scholar
  8. Clarke, E.H. 1971. Multipart pricing of public goods. Public Choice 11: 17–33.CrossRefGoogle Scholar
  9. Cramton, P., Y. Shoham, and R. Steinberg. 2006. Combinatorial auctions. Cambridge, MA: MIT Press.Google Scholar
  10. Crémer, J., and R.P. McLean. 1985. Optimal selling strategies under uncertainty for a discriminating monopolist when demands are interdependent. Econometrica 53: 345–361.CrossRefGoogle Scholar
  11. Groves, T. 1973. Incentives in teams. Econometrica 41: 617–631.CrossRefGoogle Scholar
  12. Gul, F., and E. Stacchetti. 1999. Walrasian equilibrium with gross substitutes. Journal of Economic Theory 87: 95–124.CrossRefGoogle Scholar
  13. Harris, M., and A. Raviv. 1981. Allocation mechanisms and the design of auctions. Econometrica 49: 1477–1499.CrossRefGoogle Scholar
  14. Kelso, A.S. Jr., and V.P. Crawford. 1982. Job matching, coalition formation, and gross substitutes. Econometrica 50: 1483–1504.CrossRefGoogle Scholar
  15. Klemperer, P. 2000. The economic theory of auctions. Cheltenham: Edward Elgar.Google Scholar
  16. Krishna, V. 2002. Auction theory. San Diego: Academic Press.Google Scholar
  17. Kwasnica, A.M., J.O. Ledyard, D. Porter, and C. DeMartini. 2005. A new and improved design for multiobject iterative auctions. Management Science 51: 419–434.CrossRefGoogle Scholar
  18. Maskin, E., and J. Riley. 1989. Optimal multi-unit auctions. In The economics of missing markets, information, and games, ed. F. Hahn. Oxford: Oxford Univ. Press.Google Scholar
  19. Maskin, E., and J. Riley. 2003. Uniqueness of equilibrium in sealed high-bid auctions. Games and Economic Behavior 45: 395–409.CrossRefGoogle Scholar
  20. McAfee, R.P., and J. McMillan. 1987. Auctions and bidding. Journal of Economic Literature 25: 699–738.Google Scholar
  21. Milgrom, P. 2000. Putting auction theory to work: The simultaneous ascending auction. Journal of Political Economy 108: 245–272.CrossRefGoogle Scholar
  22. Milgrom, P. 2004. Putting auction theory to work. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Milgrom, P.R., and R.J. Weber. 1982. A theory of auctions and competitive bidding. Econometrica 50: 1089–1122.CrossRefGoogle Scholar
  24. Myerson, R.B. 1981. Optimal auction design. Mathematics of Operations Research 6: 58–73.CrossRefGoogle Scholar
  25. Parkes, D.C., and L.H. Ungar. 2000. Iterative combinatorial auctions: theory and practice. Proceedings of the 17th National Conference on Artificial Intelligence, 74–81.Google Scholar
  26. Rassenti, S.J., V.L. Smith, and R.L. Bulfin. 1982. A combinatorial auction mechanism for airport time slot allocation. Bell Journal of Economics 13: 402–417.CrossRefGoogle Scholar
  27. Riley, J.G., and W.F. Samuelson. 1981. Optimal auctions. American Economic Review 71: 381–392.Google Scholar
  28. Vickrey, W. 1961. Counterspeculation, auctions and competitive sealed tenders. Journal of Finance 16: 8–37.CrossRefGoogle Scholar
  29. Wilson, R. 1979. Auctions of shares. Quarterly Journal of Economics 93: 675–689.CrossRefGoogle Scholar
  30. Wilson, R. 1992. In Strategic analysis of auctions. In handbook of game theory, 1st ed., ed. R. Aumann and S. Hart. Amsterdam: North-Holland.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Lawrence M. Ausubel
    • 1
  1. 1.