The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Simulation Estimators in Macroeconometrics

  • Beth F. Ingram
Reference work entry


The article outlines the method of simulated moments as a technique for estimating the parameters of dynamic, stochastic general equilibrium macroeconomic models. A detailed description is provided for implementation of the method, and its statistical properties are discussed. A brief comparison with other common estimation methods (calibration, generalized method of moments and maximum likelihood) is presented.


Autocorrelation consistent estimators Bayesian methods in macroeconometrics Calibration Dynamic, stochastic, general equilibrium (DSGE) models Ergodicity Euler equations Expected utility Generalized method of moments Heteroskedasticity Maximum likelihood estimation Method of simulated moments Simulation estimators in macroeconometrics 

JEL Classification

D4 D10 
This is a preview of subscription content, log in to check access.


  1. Andrews, D. 1991. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59: 817–858.CrossRefGoogle Scholar
  2. DeJong, D., B. Ingram, and C. Whiteman. 2000. A Bayesian approach to dynamic macroeconomics. Journal of Econometrics 98: 203–223.CrossRefGoogle Scholar
  3. Duffie, D., and K. Singleton. 1993. Simulated moments estimation of Markov models of asset prices. Econometrica 61: 929–952.CrossRefGoogle Scholar
  4. Hansen, L. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50: 1029–1054.CrossRefGoogle Scholar
  5. Lee, B., and B. Ingram. 1991. Simulation estimation of time-series models. Journal of Econometrics 47: 197–205.CrossRefGoogle Scholar
  6. Newey, W., and K. West. 1987. A simple, positive definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55: 703–708.CrossRefGoogle Scholar
  7. Ruge-Murcia, F. 2003. Methods to estimate dynamic stochastic general equilibrium models, Working paper No. 17-2003. Montréal: CIREQ, University of Montreal.Google Scholar
  8. Zhou, H. 2001. Finite sample properties of EMM, GMM, QMLE, and MLE for a square-root interest rate diffusion model. Journal of Computational Finance 5: 89–122.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Beth F. Ingram
    • 1
  1. 1.