Skip to main content

Fractals

  • Reference work entry
  • First Online:
  • 20 Accesses

Abstract

Fractals have become increasingly useful tools for the statistical modelling of financial prices. While early research assumed invariance of the return density with the time horizon, new processes have recently been developed to capture nonlinear changes in return dynamics across frequencies. The Markov-switching multifractal (MSM) is a parsimonious stochastic volatility model containing arbitrarily many shocks of heterogeneous durations. MSM captures the outliers, volatility persistence and power variation of financial series, while permitting maximum likelihood estimation and analytical multi-step forecasting. MSM compares favourably with standard volatility models such as GARCH(1,1) both in-and out-of-sample.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   6,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   8,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Andersen, T., T. Bollerslev, F. Diebold, and P. Labys. 2001. The distribution of realized exchange rate volatility. Journal of the American Statistical Association 96: 42–55.

    Article  Google Scholar 

  • Bachelier, L. 1900. Théorie de la spéculation. Annales Scientifiques de l’Ecole Normale Supérieure 17: 21–86.

    Article  Google Scholar 

  • Baillie, R. 1996. Long memory processes and fractional integration in econometrics. Journal of Econometrics 73: 5–59.

    Article  Google Scholar 

  • Barndorff-Nielsen, O., and N. Shephard. 2004. Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics 2: 1–37.

    Article  Google Scholar 

  • Calvet, L., and A. Fisher. 2002a. Multifractality in asset returns: Theory and evidence. Review of Economics and Statistics 84, 381–406.

    Google Scholar 

  • Calvet, L., and A. Fisher. 2002b. Regime-switching and the estimation of multifractal processes. Working paper. Harvard University and University of British Columbia.

    Google Scholar 

  • Calvet, L., and A. Fisher. 2005a. Multifrequency news and stock returns. Working paper no. 11441. Cambridge, MA: NBER.

    Google Scholar 

  • Calvet, L., and A. Fisher. 2005b. Multifrequency jump diffusions: An equilibrium approach. Working paper. HEC School of Management and University of British Columbia.

    Google Scholar 

  • Calvet, L., and A. Fisher. 2001. Forecasting multifractal volatility. Journal of Econometrics 105: 27–58.

    Article  Google Scholar 

  • Calvet, L., and A. Fisher. 2004. How to forecast long-run volatility: Regime-switching and the estimation of multifractal processes. Journal of Financial Econometrics 2: 49–83.

    Article  Google Scholar 

  • Calvet, L., A. Fisher, and B. Mandelbrot. 1997. A multifractal model of asset returns, Discussion papers 1164–1166. New Haven: Cowles Foundation, Yale University.

    Google Scholar 

  • Calvet, L., A. Fisher, and S. Thompson. 2006. Volatility comovement: A multifrequency approach. Journal of Econometrics 131: 179–215.

    Article  Google Scholar 

  • Campbell, J., and L. Hentschel. 1992. No news is good news: An asymmetric model of changing volatility in stock returns. Journal of Financial Economics 31: 281–318.

    Article  Google Scholar 

  • Dacorogna, M., U. Müller, R. Nagler, R. Olsen, and O. Pictet. 1993. A geographical model for the daily and weekly seasonal volatility in the foreign exchange market. Journal of International Money and Finance 12: 413–438.

    Article  Google Scholar 

  • Ding, Z., C. Granger, and R. Engle. 1993. A long memory property of stock returns and a new model. Journal of Empirical Finance 1: 83–106.

    Article  Google Scholar 

  • Granger, C., and R. Joyeux. 1980. An introduction to long memory time series models and fractional differencing. Journal of Time Series Analysis 1: 15–29.

    Article  Google Scholar 

  • Kolmogorov, A. 1940. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen raum. Comptes Rendus de l’Académie des Sciences de l’URSS 26: 115–118.

    Google Scholar 

  • LeBaron, B. 2001. Stochastic volatility as a simple generator of apparent financial power laws and long memory. Quantitative Finance 1: 621–631.

    Article  Google Scholar 

  • Lévy, P. 1924. Théorie des erreurs: la loi de Gauss et les lois exceptionnelles. Bulletin de la Société Mathématique de France 52: 49–85.

    Article  Google Scholar 

  • Lo, A. 1991. Long memory in stock market prices. Econometrica 59: 1279–1313.

    Article  Google Scholar 

  • Lux, T. 2001. Turbulence in financial markets: The surprising explanatory power of simple cascade models. Quantitative Finance 1: 632–640.

    Article  Google Scholar 

  • Lux, T. 2004. The Markov-switching multifractal model of asset returns: GMM estimation and linear forecasting of volatility. Working paper. Kiel University.

    Google Scholar 

  • Maheswaran, S., and C. Sims. 1993. Empirical implications of arbitrage-free asset markets. In Models, methods and applications of econometrics, ed. P. Phillips. Oxford: Blackwell.

    Google Scholar 

  • Mandelbrot, B. 1963. The variation of certain speculative prices. Journal of Business 36: 394–419.

    Article  Google Scholar 

  • Mandelbrot, B. 1965. Une classe de processus stochastiques homothétiques à soi. Comptes Rendus de l’Académie des Sciences de Paris 260: 3274–3277.

    Google Scholar 

  • Mandelbrot, B. 1974. Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics 62: 31–58.

    Article  Google Scholar 

  • Mandelbrot, B. 1982. The fractal geometry of nature. New York: Freeman.

    Google Scholar 

  • Mandelbrot, B., and J. Van Ness. 1968. Fractional Brownian motion, fractional noises and applications. SIAM Review 10: 422–437.

    Article  Google Scholar 

  • Samorodnitsky, G., and M. Taqqu. 1994. Stable non-gaussian random processes. New York: Chapman and Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Copyright information

© 2018 Macmillan Publishers Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Calvet, L.E. (2018). Fractals. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95189-5_2730

Download citation

Publish with us

Policies and ethics