Skip to main content

Econophysics

  • Reference work entry
  • First Online:
The New Palgrave Dictionary of Economics
  • 41 Accesses

Abstract

Econophysics, a term neologized only in 1995, refers to physicists studying economics problems using conceptual approaches from physics. Certain ideas are emphasized, especially the ubiquity of scaling laws in distributions of financial returns, income and wealth, firm sizes, city sizes, and other economic phenomena. However, economists have been using many of these techniques since much earlier, and the influence of ideas from physics on economics dates as far back as 1801 at least. Arguably, if economics successfully absorbs the most useful of this work, ‘econophysics’ may cease to exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 8,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Anderson, P., K. Arrow, and D. Pines, eds. 1988. The economy as an evolving complex system. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Arrow, K. 1974. Essays in the theory of risk bearing. Amsterdam: North-Holland.

    Google Scholar 

  • Arthur, W., S. Durlauf, and D. Lane, eds. 1997. The economy as an evolving complex system II. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Axtell, R. 2001. Zipf distribution of firm sizes. Science 293: 1818–1820.

    Article  Google Scholar 

  • Bachelier, L. 1900. Théorie de la spéculation. Annales Scientifique de lÉcole Normale Supérieure III-17, 21–86. (English translation). In The random character of stock market prices, ed. P. Cootner, 1964. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bak, Per. 1996. How nature eorks: The science of self-organized criticality. New York: Copernicus Press for Springer-Verlag.

    Book  Google Scholar 

  • Bak, P., K. Chen, J. Scheinkman, and M. Woodford. 1993. Aggregate fluctuations from independent sectoral shocks: self-organized criticality in a model of production and inventory dynamics. Ricerche Economiche 47: 3–30.

    Article  Google Scholar 

  • Black, F., and M. Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–654.

    Article  Google Scholar 

  • Blume, L. 1993. The statistical mechanics of strategic interaction. Games and Economic Behavior 5: 387–424.

    Article  Google Scholar 

  • Botazzi, G., and A. Secchi. 2003. A stochastic model of firm growth. Physica A 324: 213–219.

    Article  Google Scholar 

  • Bouchaud, J.-P., and R. Cont. 1998. A Langevin approach to stock market fluctuations and crashes. European Physical Journal B 6: 543–550.

    Article  Google Scholar 

  • Bouchaud, J.-P., and M. Mézard. 2000. Wealth condensation in a simple model of economy. Physica A 282: 536–545.

    Article  Google Scholar 

  • Brock, W. 1993. Pathways to randomness in the economy: emergent nonlinearity and chaos in economics and finance. Estudios Económicos 8: 3–55.

    Google Scholar 

  • Brock, W., and S. Durlauf. 2001. Discrete choice with social interactions. Review of Economic Studies 68: 235–260.

    Article  Google Scholar 

  • Canard, N.-F. 1801. Principes d’Économie Politique, 1969. Rome: Edizioni Bizzarri.

    Google Scholar 

  • Canning, D., L. Amaral, Y. Lee, M. Meyer, and H. Stanley. 1998. A power law for scaling the volatility of GDP growth rates with country size. Economics Letters 60: 335–341.

    Article  Google Scholar 

  • Chakrabarti, B. 2005. Econphys-Kolkata: a short story. In Econophysics of wealth distributions, ed. A. Chatterjee, S. Yarlagadda, and B. Charkrabarti. Milan: Springer.

    Google Scholar 

  • Chatterjee, A., S. Yarlagadda, and B. Charkrabarti, eds. 2005. Econophysics of wealth distributions. Milan: Springer.

    Google Scholar 

  • Clementi, F., and M. Gallegati. 2005. Power law tails in the Italian personal income distribution. Physica A 350: 427–438.

    Article  Google Scholar 

  • Drăgulescu, A., and V. Yakovenko. 2001. Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States. Physica A 299: 213–221.

    Article  Google Scholar 

  • Durlauf, S. 1993. Nonergodic economic growth. Review of Economic Studies 60: 349–366.

    Article  Google Scholar 

  • Durlauf, S. 1997. Statistical mechanics approaches to socioeconomic behavior. In The Economy as a complex evolving system II, ed. W. Arthur, S. Durlauf, and D. Lane. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von der ruhenden Flüssigkeiten suspendierten Teichen. Annalen der Physik 17: 549–560.

    Article  Google Scholar 

  • Farmer, J., and S. Joshi. 2002. The price dynamics of common trading strategies. Journal of Economic Behavior and Organization 49: 149–171.

    Article  Google Scholar 

  • Fisher, I. 1926. Mathematical investigations into the theory of value and prices. New Haven: Yale University Press.

    Google Scholar 

  • Foley, D. 1994. A statistical equilibrium theory of markets. Journal of Economic Theory 62: 321–345.

    Article  Google Scholar 

  • Föllmer, H. 1974. Random economies with many interacting agents. Journal of Mathematical Economics 1: 51–62.

    Article  Google Scholar 

  • Gabaix, X. 1999. Zipf’s law for cities: an explanation. Quarterly Journal of Economics 114: 739–767.

    Article  Google Scholar 

  • Gibbs, J. 1902. Elementary principles in statistical mechanics. New Haven: Yale University Press.

    Google Scholar 

  • Gibrat, R. 1931. Les Inégalités Économiques. Paris: Sirey.

    Google Scholar 

  • Gopakrishnan, P., V. Plerou, L. Amaral, M. Meyer, and H. Stanley. 1999. Scaling of the distributions of fluctuations of financial market indices. Physical Review E 60: 5305–5316.

    Article  Google Scholar 

  • Hartmann, G., and O. Rössler. 1998. Coupled flare attractors – a discrete prototype for economic modelling. Discrete Dynamics in Nature and Society 2: 153–159.

    Article  Google Scholar 

  • Hens, T. 2002. Evolutionary portfolio theory. Asset allocation almanac: special report #4. Merrill Lynch. Online. Available at http://www.evolutionaryfinance.ch/uploads/media/MerrillLynch.pdf. Accessed 22 May 2006.

  • Hodgson, G. 1993. Economics and evolution: bringing life back into economics. Ann Arbor: University of Michigan Press.

    Book  Google Scholar 

  • Ijiri, Y., and H. Simon. 1977. Skew distributions and the sizes of business firms. Amsterdam: North-Holland.

    Google Scholar 

  • Levy, M., and S. Solomon. 1997. New evidence for the power-law distribution of wealth. Physica A 242: 90–94.

    Article  Google Scholar 

  • Lévy, P. 1925. Calcul des Probabilités. Paris: Gauthier-Villars.

    Google Scholar 

  • Li, H., and J. Rosser Jr. 2004. Market dynamics and stock price volatility. European Physical Journal B 39: 409–413.

    Article  Google Scholar 

  • Lotka, A. 1926. The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences 12: 317–323.

    Google Scholar 

  • Lux, T., and M. Marchesi. 1999. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397: 498–500.

    Article  Google Scholar 

  • Majorana, E. 1942. Il valore delle leggi statistiche nelle fisica e nelle scienze sociali. Scientia 36: 58–66.

    Google Scholar 

  • Mandelbrot, B. 1963. The variation of certain speculative prices. Journal of Business 36: 394–419.

    Article  Google Scholar 

  • Mandelbrot, B. 1983. The fractal geometry of nature. San Francisco: W.H. Freeman.

    Google Scholar 

  • Mandelbrot, B. 1997. Fractals and scaling in finance. New York: Springer-Verlag.

    Book  Google Scholar 

  • Mantegna, R. 1991. Lévy walks and enhanced diffusion in Milan stock exchange. Physica A 179: 232–242.

    Article  Google Scholar 

  • Mantegna, R., and H. Stanley. 2000. An introduction to econophysics: correlations and complexity in finance. Cambridge: Cambridge University Press.

    Google Scholar 

  • Marshall, A. 1920. Principles of economics. 8 ed. London: Macmillan.

    Google Scholar 

  • McCauley, J. 2004. Dynamics of markets: econophysics and finance. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mirowski, P. 1989. More heat than light: economics as social physics, physics as nature’s economics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Osborne, M. 1959. Brownian motion in stock markets. Operations Research 7: 145–173.

    Article  Google Scholar 

  • Padgett, J., D. Lee, and N. Collier. 2003. Economic production as chemistry. Industrial and Corporate Change 12: 843–877.

    Article  Google Scholar 

  • Pareto, V. 1897. Cours dÉconomie Politique. Paris and Lausanne. Trans. In Manual of Political Economy, ed. A. Schwier, 1971. New York: Kelly.

    Google Scholar 

  • Plerou, V., L. Amaral, P. Gopakrishnan, M. Meyer, and H. Stanley. 1999. Similarities between the growth dynamics of university research and competitive economic activities. Nature 400: 433–437.

    Article  Google Scholar 

  • Rosser, J. Jr. 1994. Dynamics of emergent urban hierarchy. Chaos, Solitons & Fractals 4: 553–562.

    Article  Google Scholar 

  • Samuelson, P. 1947. Foundations of economic analysis. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Sornette, D. 2003. Why stock markets crash: critical events in complex financial systems. Princeton: Princeton University Press.

    Google Scholar 

  • Sornette, D., and A. Johansen. 2001. Significance of log-periodic precursors to financial crashes. Quantitative Finance 1: 452–471.

    Article  Google Scholar 

  • Sornette, D., and D. Zajdenweber. 1999. Economic returns of research: The Pareto law and its implications. European Physical Journal B 8: 653–664.

    Article  Google Scholar 

  • Spitzer, F. 1971. Random fields and interacting particle systems. Providence: American Mathematical Society.

    Google Scholar 

  • Stanley, H., V. Afanasyev, L. Aamaral, S. Buldyrev, A. Goldberger, S. Havlin, H. Leschhorn, P. Maass, R. Mantegna, C.-K. Peng, P. Prince, M. Salinger, M. Stanley, and G. Viswanathan. 1996a. Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Physica A 224: 302–321.

    Article  Google Scholar 

  • Stanley, M., L. Amaral, S. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. Salinger, and H. Stanley. 1996b. Scaling behavior in the growth of companies. Nature 379: 804–806.

    Article  Google Scholar 

  • Stutzer, M. 1994. The statistical mechanics of asset prices. In Differential equations, dynamical systems, and control science: A festschrift in honor of lawrence markus, ed. K. Elworthy, W. Everitt, and E. Lee, vol. 152. New York: Marcel Dekker.

    Google Scholar 

  • Takayasu, H., and K. Okuyama. 1998. Country dependence on company size distributions and a numerical model based on competition and cooperation. Fractals 6: 67–79.

    Article  Google Scholar 

  • Zipf, G. 1941. National unity and disunity. Bloomington, IN: Principia Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Copyright information

© 2018 Macmillan Publishers Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barkley Rosser, J. (2018). Econophysics. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95189-5_2701

Download citation

Publish with us

Policies and ethics