The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Strategic and Extensive Form Games

  • Martin J. Osborne
Reference work entry


The basic theory of strategic and extensive games is described. Strategic games, Bayesian games, extensive games with perfect information, and extensive games with imperfect information are defined and explained. Among the solution concepts discussed are Nash equilibrium, correlated equilibrium, rationalizability, subgame perfect equilibrium, and weak sequential equilibrium.


Auctions Bargaining game Bayesian games Behavioural strategy Bertrand oligopoly Correlated equilibrium Cournot oligopoly Cournot, A. Extensive games with imperfect information Extensive games with perfect information Hotelling, H. Mixed strategy Nash equilibrium Nash equilibrium Prisoner’s Dilemma Rationalizability Strategic games Subgame perfect equilibrium 

JEL Classifications

This is a preview of subscription content, log in to check access.



I am grateful to Jean Guillaume Forand for comments and to the Social Sciences and Humanities Research Council of Canada for financial support.


  1. Aumann, R. 1974. Subjectivity and correlation in randomized strategies. Journal of Mathematical Economics 1: 67–96.CrossRefGoogle Scholar
  2. Bernheim, B. 1984. Rationalizable strategic behavior. Econometrica 52: 1007–1028.CrossRefGoogle Scholar
  3. Cournot, A. 1838. Recherches sur les principes mathématiques de la théorie des richesses. Paris: Hachette. Trans. N. Bacon as researches into the mathematical principles of the theory of wealth. New York: Macmillan 1897.Google Scholar
  4. Fudenberg, D., and J. Tirole. 1991. Perfect Bayesian equilibrium and sequential equilibrium. Journal of Economic Theory 53: 236–260.CrossRefGoogle Scholar
  5. Glicksberg, I. 1952. A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proceedings of the American Mathematical Society 3: 170–174.Google Scholar
  6. Harsanyi, J. 1967. Games with incomplete information played by ‘Bayesian’ players, parts I, II, and III. Management Science 14: 159–182.320–34, and 486–502CrossRefGoogle Scholar
  7. Harsanyi, J. 1973. Games with randomly disturbed payoffs: A new rationale for mixed-strategy equilibrium points. International Journal of Game Theory 2: 1–23.CrossRefGoogle Scholar
  8. Hotelling, H. 1929. Stability in competition. Economic Journal 39: 41–57.CrossRefGoogle Scholar
  9. Kreps, D., and R. Wilson. 1982. Sequential equilibria. Econometrica 50: 863–894.CrossRefGoogle Scholar
  10. Kuhn, H. 1950. Extensive games. Proceedings of the National Academy of Sciences of the United States of America 36: 570–576.CrossRefGoogle Scholar
  11. Kuhn, H. 1953. Extensive games and the problem of information. In Contributions to the theory of games, volume II (Annals of mathematics studies, 28), ed. H. Kuhn and A. Tucker. Princeton: Princeton University Press.Google Scholar
  12. Nash, J. Jr. 1950. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the United States of America 36: 48–49.CrossRefGoogle Scholar
  13. Nash, J. Jr. 1951. Non-cooperative games. Annals of Mathematics 54: 286–295.CrossRefGoogle Scholar
  14. Pearce, D. 1984. Rationalizable strategic behavior and the problem of perfection. Econometrica 52: 1029–1050.CrossRefGoogle Scholar
  15. Reny, P. 1999. On the existence of pure and mixed strategy Nash equilibria in discontinuous games. Econometrica 67: 1029–1056.CrossRefGoogle Scholar
  16. Selten, R. 1965. Spieltheoretische behandlung eines oligopolmodells mit nachfragetrgheit. Zeitschrift für die gesamte Staatswissenschaft 121(301–24): 667–689.Google Scholar
  17. von Neumann, J., and O. Morgenstern. 1944. Theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  18. von Neumann, J., and O. Morgenstern. 1947. Theory of games and economic behavior. 2nd ed. Princeton: Princeton University Press.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Martin J. Osborne
    • 1
  1. 1.